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a b s t r a c t

We derive general conditions for the design of two-dimensional stiffest elastic networks with tetrakis-
like (or ‘Union Jack’-like) topology. Upon generalizing recent results for tetrakis structures composed
of two different rod geometries (length and cross-sectional area), we derive the elasticity tensor of a
lattice with generalized tetrakis architecture, which is composed of three kinds of rods and generally
exhibits anisotropic response. This study is accompanied by an experimental verification of the theoretical
prediction for the longitudinalmodulus of the lattice. In addition, the introduction of a third rod geometry
allows to extend considerably the possible lattice geometries for isotropic, stiffest elastic lattices with
tetrakis-like topology. The potential of the analyzed structures as innovative metamaterials featuring
extremely high elastic moduli vs. density ratios is highlighted.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, there has been a growing interest in the design
and fabrication of lattice metamaterials exhibiting a variety of
‘extreme’ behaviors not found in natural materials. These may
include: exceptional strength- and stiffness-to-weight ratios; ex-
cellent strain recoverability; very soft and/or very stiff deformation
modes; auxetic behavior; phononic band-gaps; sound control abil-
ity; negative effective mass density; negative effective stiffness;
negative effective refraction index; superlens behavior; and/or
localized confined waves, to name some examples (refer, e.g.,
to [1–10] and references therein).

As a matter of fact, a challenging approach to fill holes in
material property charts (relating elastic stiffness and/or strength
properties to material density) consists of playing with the mi-
crostructure of lattice materials in order to obtain an optimal com-
bination ofmaterial and space (voids) at different scales [1]. Lattice
metamaterials are structural networks made up of a large number
of unit cells, which feature macroscopic length scales much larger
than the length scales of the individual rods, and are such that their
mesoscopic mechanical properties mainly derive by the geometry
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of the microstructure, rather than from the chemical composition
of the material. Lightweight and strong lattices with nanoscale
features and hierarchical architecture have been recently fabri-
cated through the coating of additively manufactured polymeric
scaffolds with metallic or ceramic materials, obtaining ultralight
hollow-tube ceramic nanolattices that exhibit ultrastiff properties
across more than three orders of magnitude in density [8], and/or
ductile-like deformation and recoverability [6]. Attention is in-
creasingly being given to metamaterials that feature geometrical
nonlinear behavior, and precompression-tuned response [11–14].

In a recent work, Gurtner and Durand [15] studied themechan-
ical properties of isotropic networks of elastic rods in the linear
elastic regime. As long as the typical dimensions of a junction are
the same as the typical rod thickness, the energy cost associated
with node deformation can be neglected in comparison with the
rod stretching energy. However, no assumption is made on the
relative importance of energy cost associated with node defor-
mation and rod bending, so the mechanical response is generally
not equivalent to those of pin-jointed structures. On dimensional
grounds [1], it is clear that networks deforming primarily through
the beam stretching mode are much stiffer than those deforming
through the bending mode. However, stiffness still varies sig-
nificantly among stretch-dominated networks. Only few struc-
tures have the peculiarity of deforming through beam stretching
rather than bending: most structures will indeed deform primarily
through other mechanisms than pure beam stretching. As an illus-
tration, an hexagonal network will deform through beam bending
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mode if the energetic cost of node deformation is relatively much
higher, and through node deformation in the opposite limit (which
coincides to pin-jointed structures). Gurtner and Durand [15] have
demonstrated the existence of stiffest elastic networks, which are
stiffer than any lattice materials featuring the same symmetry,
density and rod elastic properties. These stretch-dominated net-
works deform in affineway down to the heterogeneity scale under
any loading conditions that are compatible with the linear elastic
regime. Their elastic moduli constitute upper-bounds which are
identical (3D) or below (2D) the well-known Hashin–Shtrikman
(HS) bounds in the low-density limit. Then, these bounds are more
precise than the HS bounds, but limited to networks of elastic
rods only, while HS bounds apply to any diphasic structures. It
is also worth noting that Deshpande et al. [16] have shown that
triangulated structures having bars mutually clamped in the joints
still exhibit stretching-dominated regime, and the collapse load is
dictated mainly by the axial strength of the struts.

In the two-dimensional (2D) case, a special class of stiffest
elastic networks is that of structures showing tetrakis (or ‘Union
Jack’) architecture, that is, lattices that tassellate the plane through
square modules of right isosceles triangles [17]. By design, these
lattices employ rods with two different lengths: one for the hori-
zontal and vertical rods, and one for the diagonal rods. The cross-
sectional areas are then adjusted to satisfy isotropic elastic prop-
erties [15].

From the fabrication point of view, both stretching-dominated
and bending-dominated lattices can be fabricated employing
additive-manufacturing technologies. Some examples are given
in [18], in which mechanical microarchitected metamaterials
made out of highly stretchable elastomers are fabricated through
projectionmicro-stereo-lithography. Available literature results in
this area confirm the theoretical findings about the stiffer response
of stretch-dominated lattices structure, as compared to struc-
tures featuring relevant bending deformation effects at the nodes
and within the bars [6,8]. It is noteworthy that the stretching-
dominated response survives in cellular structures away from ide-
alized networks with freely hinged joints [19]. The additive man-
ufacturing of lattices featuring rods tapered near the junctions has
also been investigated [20,21], with the aim ofminimizing bending
effects. The role played bymechanical interlocking connections has
been studied in [22].

The present Letter presents a multifold generalization of the
results obtained by Gurtner and Durand for tetrakis lattices [15]:
(i) we derive the elasticity tensor of a tetrakis lattice with arbitrary
shape and anisotropic response (Section 2); (ii) we present an
experimental validation of the longitudinal elastic modulus pre-
dicted by such a theory against laboratory tests on a physicalmodel
(Section 2.2); (iii) we derive more general optimality conditions
for the achievement of 2D stiffest networks (Section 3), which
assume the presence of three different kinds of rods (horizontal,
vertical, and diagonal) in the unit cell. The given results allow
us to develop general conditions for the achievement of stiffest
elastic networks in 2D, and pave the way to the design of stiff and
lightweight structures featuring either one dimensionmuch larger
than the others (plane strain), or one dimensionmuch smaller than
the others (plane stress). These may be e.g. employed to design
lightweight and stiff components of aeronautical structures, or
next generation facades of tall buildings.

2. Anisotropic response of tetrakis-like lattices

Gurtner and Durand focus their study [15] primarily on stiffest
elastic networks with isotropic symmetry (see also [23]). In the
present work, we initially extend this study by analyzing the
existence conditions for anisotropic structures with ‘tetrakis-like’
architecture that deform affinely under any loading conditions.

Such lattices tessellate the plane through rectangular –rather than
square – modules of right triangles that show arbitrary aspect
ratios between horizontal and vertical edges (Fig. 1(a)). Their ele-
mentary unit cell (or ‘building block’) consists of the hatched region
shown in Fig. 1(b), which features at least two axes of geometric
symmetry (depending on the h1 vs. h2 ratio). The tetrakis lattices
studied in [15] are obtained as a special case, by setting h1 = h2,
assuming two different cross-sectional areas for the horizontal and
vertical elements (first cross section) and the diagonal elements
(second cross section), and using the samematerial for all the rods.
We hereafter allow our tetrakis-like lattices to exhibit different
materials and cross-section in different rods, and make use of the
symbols Ak, Lk and Ek to respectively denote the cross sectional
area, the reference length, and the Young modulus of the kth rod
forming the building block shown in Fig. 1(b), which connects the
central node 0 to node k (k = 1, . . . , 8).

Following thework of [15], we look for the structural conditions
under which a tetrakis-like architecture deforms affinely down
to the microscopic scale, given an arbitrary, homogeneous and
infinitesimal deformation of the lattice at the mesoscopic scale. In
a first step, we calculate the strain energy that would be associated
with such an affine deformation. We describe such a deformation
through a displacement field of the form

u = εx, (1)

where x denotes the position vector, and ε denotes the infinitesi-
mal strain matrix with Cartesian components εij with respect to a
frame {O, e1, e2, e3} having the e1 and e2 unit vectors aligned with
horizontal and vertical rods, respectively, and the e3 unit vector
orthogonal to the lattice plane. It is an easy task to compute the
strain energy EL associated to an affine deformation of a tetrakis-
like lattice as follows
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Let us define the solid volume intercepted by the building block
as VL =

∑
kAkLk, and the solid volume fraction as φ = VL/V ,

where V denotes the volume of the building block. The homoge-
nized strain energy density of the lattice is computed as follows

ϕL =
EL
V

= φ
EL
VL

. (3)

Wenowestablish the structural properties of the lattice that are
compatible with an affine deformation down to the microscopic
scale, by enforcing the balance of forces everywhere in the struc-
ture. Under affine deformation, forces distributed in the lattice
are parallel to the rods, and the balance equation at every node
k = 1, . . . , 8 yields:

EiAiεi = Ei+4Ai+4εi+4 i = {1, . . . , 4}, (4)

where εi = e0iεe0i is the extension of rod connecting nodes 0 and
i, and e0i its unit tangent vector. Trivially, e0i+4 = −e0i, εi+4 = εi,
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