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a b s t r a c t

It is well known that size effects play an important role in the mechanical behavior of bone tissues at
different scales. In this paper we propose a second gradient model for accounting these effects in a visco-
poro-elastic material and present some sample applications where bone is coupled with bioresorbable
artificial materials of the kind used in reconstructing surgery.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Substantial size effects are known to occur in the elastic be-
havior of (i) single osteons [1], (ii) human compact bone [2–6],
(iii) human trabecular bone [7,8]. In the first case, the size effects
are attributed to compliance of the interfaces between laminae.
In the second case, there is experimental evidence that the ce-
ment lines as compliant interfaces account for most of the differ-
ence in stiffness between osteons and whole bone. In the third
case, continuum properties vary by more than 20%–30% over a
distance spanning three to five trabeculae and hence a contin-
uum model for the structure is suspect [7]. Therefore, Ramézani
et al. [8] used the Cosserat theory to describe the hierarchi-
cal multi-scale behavior of trabecular human bone using micro-
CT images, namely: (i) macroscale, dealing with cancellous bone
or spongy bone at real size; (ii) meso-scale, representing non-
homogeneous and stochastic network clusters; (iii) micro-scale,
indicating the micro-randomness and heterogeneous deforma-
tions; (iv) sub-micro- and nano-scale, showing single lamellas in-
cluding collagen fibers and apatite crystals. Generally speaking, the
limitations of the continuum assumption appear in two areas: near
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biologic interfaces, and where there are large stress gradients. To
incorporate the scale of themicrostructure of a heterogeneousma-
terial within the continuum framework, a number of phenomeno-
logical ‘remedies’ have been proposed that involve the relaxation
of the local action hypothesis of classical continuum mechanics.
Such enriched (or enhanced) continuum models aim at includ-
ing information on the microstructure and can be classified into
three main groups [9], namely: (i) non-local integral models [10,
11], (ii) higher-order gradient models [12–14] and (iii) microp-
olar theories [15–17]. Bleustein [18] showed how the boundary
conditions of a linear theory of an elastic continuum with micro-
structure [19] can be reduced to those of a corresponding linear
form of a strain gradient theory [20]. Following this way of think-
ing, second gradient materials can be interpreted as a particular
limit case ofmicromorphic (ormicropolar)media because they can
be deduced from micromorphic ones by constraining the micro-
morphic kinematic descriptors to be equal to the classical strain
ones by introducing internal constraints and Lagrange multipliers.
We remark that this constrained approach which is rigorous in a
finite-dimensional space, it is assumed reasonably acceptable in an
infinite-dimensional space on the basis of an argument of analogy.
This paper is inspired by themore general framework of a research
oriented to design the mechanical characteristics of the biomate-
rial constituting the graft, namely mass density and resorption ve-
locity, in order to optimize the mass density distribution of the
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Fig. 1. Sample under study at initial stage. The labels ‘‘B’’ and ‘‘M’’ stand for bone
and graft material, respectively.

growing bone tissue. The continuummodel employed in this paper
is accordingly richer than standard Cauchy continuum, including
higher gradients of displacement in the deformation energy. The
addition of terms in the energy involving second gradient of the
displacement arises from the consideration of the geometry of the
trabecular structure of the bone. Trabeculae are indeed organized
(locally) as a lattice system oriented along the principal stress di-
rections [21]. Since a not negligible amount of deformation energy
is stored in the form of bending of trabeculae [22], a classic Cauchy
model is not sufficiently rich and instead terms in the energy de-
scribing the curvature of themicrostructure have to be considered.
This fact naturally leads to second gradient energy models. More
generally, it has been proven [23] that high contrast at micro-level
of mechanical properties can impose at macro-level the need of
introducing deformation energies depending on higher displace-
ment gradient. In general, generalized continuum theories such as
couple stress and micropolar have degrees of freedom in addition
to those of classical elasticity [24,25]: however, in the case of the
second gradient models this is not needed [18]. All such theories
are thought to be applicable to materials with fibrous or granu-
lar structure. Experimentally Yang and Lakes measured the effect
of size on apparent stiffness of compact bone in quasi-static tor-
sion [3] and bending [4].

2. Material and methods

The considered specimen is constituted by the union of two bi-
dimensional square portions, one constituted of bone tissue and
the other of biomaterial; the square size is L/2 = W = 0.5 cm. The
mass densities of the two materials are initially assigned in each
zone and they will evolve in the subsequent remodeling process
according to the mechanical and biological laws presented in the
following (see Eq. (17)). The support conditions on one edge are
shown in a self-explanatory way in Fig. 1.

A traction distribution corresponding to a pure bending is
applied to the opposite edge as shown in Fig. 1; the load is
harmonically variable with a low frequency Ω in order to activate
the component of the stimulus which is related to dissipation,
because this phenomenon plays a key role in the bone functional
adaptation, as discussed in [26]. In particular, we set

fb(x2, t) =


2x2
W

− 1

[F0 + F1 sin(Ωt)] . (1)

Some relevant resultswill be presentedwith reference to the probe
point Pm in the material zone (Fig. 1).

3. Governing equations

Kinematics. In order to give amacroscopic description of the system
under study constituted by an insert of bio-resorbable grafting

material and a piece of bone, i.e. a porous mixture, we introduce
the placement field:

χ : (X, t) → x (2)

which takes each point of body X in the reference configuration
B and time t ∈ R into a place x in the current configuration.
Therefore, we consider the solid-matrixmacroscopic displacement
(u = x − X) as a basic kinematical descriptor and use the
Saint–Venant strain tensor

Eij(X, t) =
1
2


ui,j + uj,i + ui,k uk,j


(3)

to take elastic deformations into account. Because of the porous na-
ture of our system, we introduce another independent kinematical
descriptor to describe the micro-deformations of pores inside the
solid matrix of the system. In particular, we introduce the change
of the Lagrangian porosity, i.e. the change of the effective volume
of the fluid content per unit volume of the body with respect to an
equilibrium volume [27]. In detail,

ζ (X, t) = φ(χ(X, t), t) − φ∗(X, t) (4)

where φ and φ∗ are the Lagrangian porosity related to the current
and the reference configuration, respectively. By adopting the
approach of the mixture theory, these porosities can be expressed
as follows

φ = 1 − (ρb/ρ̂b + ρm/ρ̂m), φ∗
= 1 − (ρ∗

b/ρ̂b + ρ∗

m/ρ̂m) (5)

where ρb and ρm are the apparent mass densities of bone tissue
and artificial material, respectively; the superimposed hat denotes
the true densities, while the superscript * indicates all quantities in
the reference configuration.
Variational equation of motion. As already mentioned, the bone is
organized at micro-level as a three-dimensional porous network
of interconnected trabeculae (cancellous bone). It can be also seen
as a quasi-periodic system of cylindroid structures, i.e. osteons,
(cortical bone) characterized by a high contrast of mechanical
properties between bending and extension. Therefore, using the
classical framework of Poromechanics (Biot [27], Cowin [28]) and
second gradient continua (Mindlin [19], Toupin [20]), for the
potential energy-density – potential energy per unit of macro-
volume – we take a homogeneous, quadratic function of the
variables E , ∇E , ζ and ∇ζ [29,30,13]
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1
2
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where λ and µ are the Lamé parameters

λ =
ν Y (ρ∗

b , ρ
∗
m)

(1 + ν)(1 − 2ν)
, µ =

Y (ρ∗

b , ρ
∗
m)

2(1 + ν)
, (7)

here expressed in terms of the Young modulus of the mixture

Y = YMax
b


ρ∗

b/ρ̂b
2

+ YMax
m


ρ∗

m/ρ̂m
2 (8)

and Poisson ratio. YMax
b and YMax

m are the maximal elastic moduli.
The second gradient stiffness coefficients are assumed to be:

α1 = α2 = α4 = Y (ρ∗

b , ρ
∗

m)ℓ2, α3 = 2Y (ρ∗

b , ρ
∗

m)ℓ2,

α5 = 1/2Y (ρ∗

b , ρ
∗

m)ℓ2 (9)
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