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a b s t r a c t

Elastomers and gels can often deformmultiple times their original length. The stretchability is insensitive
to small cuts in the samples, but reduces markedly when the cuts are large. We show that this transition
occurs when the depth of cut exceeds a material-specific length, defined by the ratio of the fracture
energy measured in the large-cut limit and the work to rupture measured in the small-cut limit. This
conclusion generalizes a result in the fracture mechanics of hard materials. For an acrylic elastomer
and a polyurethane, we measure the stretch to rupture as a function of the depth of cut, and show
that the experimental data agree well with the prediction of the nonlinear elastic fracture mechanics.
In a space of material properties we compare many materials (elastomers, gels, ceramics, glassy
polymers, biomaterials, and metals), and find that the material-specific length varies from nanometers
to centimeters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Stretchable materials, such as elastomers and gels, have long
been used in tires, seals, gloves, and contact lenses. Under de-
velopment are new fields of applications, including tissue regen-
eration [1], drug delivery [2], artificial muscles [3–5], stretchable
electronics [5–9], and soft robots [10,11]. Stretchable, transparent,
ionic conductors (e.g., hydrogels and ionogels) enable devices of
unusual functions, such as transparent loudspeakers [12], artificial
skins [13], artificial axons [14,15], and electroluminescence of giant
stretchability [16–18]. The interest in themechanics of stretchable
materials has surged [19–32].

This paper focuses on a specific issue in the mechanics of
stretchable materials: the reduction of stretchability by cuts. A
cut can be introduced either intentionally using a razor blade,
or unintentionally during fabrication. In the latter case, the cut
is commonly called a flaw. The reduction of stretchability by
cuts and flaws is called flaw sensitivity. For example, an acrylic
elastomer, VHBTM, commonly used in the development of artificial
muscles [3], can deform beyond ten times its original length [33];
however, a VHB sample containing a cut of a few millimeters
ruptures when deforming 3–5 times its original length [34]. As
another example, a recent tough hydrogel can deform more than
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twenty times its original length, and a centimeter-long cut reduces
the stretchability to seventeen times [26].

Two approaches exist to predict the rupture of a stretchable
device. In one approach, the designer assumes a flawless device,
calculates the field of deformation using the nonlinear theory
of elasticity, and predicts rupture if any material point in the
device reaches a critical state of deformation [35–43]. In the other
approach, the designer identifies a flaw in the device, calculates
the energy release rate using the nonlinear theory of elasticity,
and predicts rupture if the energy release rate reaches the fracture
energy [44–47].

The two approaches work well in two limits. The first approach
requires no knowledge of flaws, and is applicable in the limit of
small flaws. The second approach requires the knowledge of flaws,
and is applicable in the limit of large flaws. The transition from
flaw-insensitive to flaw-sensitive rupture has been discussed in
the literature [48–50], but the size of the flaws over which the
transition occurs is vague for stretchable materials.

Here we study the transition from flaw-insensitive rupture
to flaw-sensitive rupture of highly stretchable materials. For an
uncut sample, we measure the work to rupture,W∗, which has the
dimension of energy per unit volume. For a sample with a large
cut, we measure the fracture energy, Γ , which has the dimension
of energy per unit area. The ratio of these two parameters, Γ /W∗,
defines a material-specific length, which we call the length of flaw
sensitivity. Using a combination of experiment and calculation, we
show that this material length marks the transition from flaw-
insensitive to flaw-sensitive rupture. When the depth of cut c
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is small compared to Γ /W∗, the stretchability is insensitive to
the cut. When c is large compared to Γ /W∗, the stretchability
reduces markedly as the depth of the cut increases. Furthermore,
we show that flaw sensitivity depends on the stretch-stiffening
behavior of elastomers, and that the experimental data agree well
with the prediction of nonlinear elastic fracture mechanics. The
concept of flaw sensitivity is applicable to all materials, including
metals, ceramics, biomaterials, and polymers. We represent the
lengths of flaw sensitivity of variousmaterials in a space ofmaterial
properties, withW∗ and Γ as axes.

The length Γ /W∗ has been used to characterize the intrinsic
diameter of the crack tip in elastomers [51,52], but has not been
used to characterize flaw sensitivity. We next compare Γ /W∗ to
other material lengths commonly used in fracture mechanics. A
length, Γ /


σ 2

∗
/E


, appears in the crack-bridging model, where

σ∗ is the maximum stress in the traction–separation curve [53–
58]. In the crack-bridging model, the region outside bridging
zone is linearly elastic with Young’s modulus E. The work to
rupture near the crack tip is given by the W∗ = σ 2

∗
/2E. For

highly stretchable materials, however, the material outside the
bridging zone is nonlinearly elastic. The material length Γ /W∗

generalizes Γ /

σ 2

∗
/E


when linear elasticity does not apply.

(We have dropped any numerical factor.) Another frequently
discussed material length is the ratio of fracture energy and elastic
modulus, Γ /E [32,59]. This length overestimates the length of
flaw sensitivity by orders of magnitude. For a highly stretchable
material, the stretchability λ∗ is on the order of ten, so that W∗ ≫

E. Consequently, the length of flaw sensitivity Γ /W∗ is much
smaller than Γ /E.

2. Transition from flaw-insensitive to flaw-sensitive rupture

Flaw-insensitive rupture
To focus on essentials, we consider the stretchability of a thin

sheet of a material under a uniaxial force. The length and the
width of the sheet are much larger than the thickness of the sheet
and the depth of the cut. Using an uncut sample, we measure the
applied force as a function of the associated displacement. The
area under the force–displacement curve divided by the volume
of the material defines the energy density,W . Let λ be the stretch,
namely, the length of the deformed sheet (in the direction of the
applied force) divided by the length before stretch. The energy
density is a function of stretch,W (λ).

For an uncut sample, let λ∗ be the stretch to rupture and W∗

be the work to rupture. The two parameters are related by the
functionW (λ):

W∗ = W (λ∗) . (1)

The stress to rupture σ∗ is defined by the applied force at rupture
divided by the deformed cross-sectional area (perpendicular to the
applied force). Criterion (1) also applies to samples containing cuts
small compared to a material length (to be specified).

The stretchability of elastomers is insensitive to small flaws.
Table 1 summarizes the experimental data from the literature
and from this work. The reported stretch, stress, and work to
rupture are within variations 5%–20% of their means. These data
were measured using uncut samples. Yet flaws exist inevitably,
either as small cracks or as heterogeneities of materials [50]. The
small scatter in the data indicates that the stretchability of these
materials is insensitive to the small flaws. This observation on
elastomers differs from that on brittle hard materials, e.g., silica
glass, in which a micron-sized flaw reduces the strength by orders
of magnitude [44].
Flaw-sensitive rupture

Flaw-sensitive rupture is predicted by fracture mechanics [47].
Consider a sheet containing a cut. The elastic energy of the sample

is a function U (∆, c), where c is the depth of the cut in the
undeformed state, and ∆ is the displacement associated with
the applied force. The reduction in the elastic energy when the
cut extends a unit area defines the energy release rate, G =

−∂U (∆, c) / (t∂c), where t is the thickness of the sheet in the
undeformed state. The energy release rate can be determined by
solving the boundary-value problem of nonlinear elasticity. When
other sizes of the specimen aremuch larger than the cut, the depth
of cut c is the only length scale in the boundary-value problem.
Dimensional considerations dictate that the energy release rate
should take the form, G (λ, c) = k (λ)W (λ) c , where k (λ) is a
dimensionless function determined by solving the boundary-value
problem. The function k (λ) depends on the model of nonlinear
elasticity [47,60]. The sample ruptures at stretch λR when the
energy release rate reaches the fracture energy, G (λR, c) = Γ .
When the cut is large and the sample ruptures at a small applied
strain, λ → 1, linear elasticity applies, and the small-deformation
limit for an edge cut is known, k (1) ≈ 2 (1.1215)2 π ≈ 7.9 [61].
The criterion of rupture becomes

W (λR) =
Γ

k (1) c
. (2)

This result is the Griffith limit [44]. Thus, we characterize the flaw-
sensitive rupture by the fracture energy Γ in the limit of large
flaws.

The transition from flaw-insensitive rupture to flaw-sensitive rupture
We have characterized the rupture of an uncut sample by the

work to rupture, W∗, which has the dimension of energy per unit
volume. For a sample containing a cut, the stateW∗ prevails ahead
the front of the cut when the sample is near rupture. We have also
characterized the rupture in the limit of large cuts by the fracture
energy, Γ , which has the dimension of energy per unit area. The
ratio of these two material parameters defines a material-specific
length, Γ /W∗.

We argue that the material length Γ /W∗ marks the transition
from flaw-insensitive to flaw-sensitive rupture. When a sample of
a small cut ruptures, except for the unstrained region behind the
front of the cut, the entire sample reaches the state ofW∗ (Fig. 1(a)).
When a sample of a large cut ruptures, only a small zone around the
front of the cut reaches the state ofW∗ (Fig. 1(b)). Inside this zone,
fracture process occurs. Outside this zone, the field of deformation
is well characterized by the nonlinear theory of elasticity. The
length scale of the fracture process zone is estimated as follows. A
dimensional consideration dictates that energy density W should
scale with the energy release rate G, and inversely scale with the
distance to crack tip r , namely, W ∼ G/r . This scaling appears in
the analytical solutions of the nonlinear elastic field around the
front of cut [25]. When the sample ruptures, the energy release
rate G reaches Γ , and the energy densityW in the fracture process
zone attainsW∗. Consequently, the size of the fracture process zone
scales with the material length Γ /W∗.

A flaw-sensitivity diagram displays the stretch to rupture λR as
a function of the depth of cut c (Fig. 1(c)). The transition occurs
when thedepth of cut c is comparable to thematerial lengthΓ /W∗.
When the depth of the cut c is small compared toΓ /W∗, the stretch
to rupture is insensitive of the depth of the cut, and the small-cut
limit (1) applies. When the depth of cut is large compared to the
material length, the stretch to rupture decreases as the depth of
the cut increases, and approaches the large-cut limit (2).

The material length Γ /W∗, together with the depth of the cut
c , defines a dimensionless number:

χ =
c

Γ /W∗

, (3)
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