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a b s t r a c t

Many biological tissues develop elaborate folds during growth and development. The onset
of this folding is often understood in relation to the creasing and wrinkling of a thin elastic
layer that grows whilst attached to a large elastic foundation. In reality, many biological
tissues are reinforced by fibers and so are intrinsically anisotropic. However, the correlation
between the fiber directions and the pattern formed during growth is not well understood.
Here, we consider the stability of a two-layer tissue composed of a thin hyperelastic strip
adhered to an elastic half-space in which are embedded elastic fibers. The combined object
is subject to a uniform compression and, at a critical value of this compression, buckles out
of the plane — it wrinkles. We characterize the wrinkle wavelength at onset as a function
of the fiber orientation both computationally and analytically and show that the onset
of surface instability can be either promoted or inhibited as the fiber stiffness increases,
depending on the fiber angle. However, we find that the structure of the resulting folds
is approximately independent of the fiber orientation. We also explore numerically the
formation of large creases in fiber-reinforced tissue in the post-buckling regime.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years there has been considerable interest in
the pattern created by the growth of a thin elastic layer at-
tached to an elastic foundation [1]. The generic behavior
of such systems is to respond to a mismatch in stresses
between the two layers by wrinkling (so that stress can
be relaxed in the stiffer layer). However, the development
of this wrinkling pattern beyond the onset of instability is
surprisingly intricate: for large ratios of layer µl to foun-
dation µs stiffness, µl/µs & 10, a period-doubling insta-
bility occurs [2–4] due to nonlinearities in the substrate
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response. For small ratios of layer to foundation stiffness,
µl/µs . 10, the system instead localizes the deformation
and a fold or crease develops. For many biological systems,
it is the latter scenario that is of most interest; for exam-
ple, the deep folding patterns that are formed during the
growth of brains are believed to be partially caused by this
instability [5–7].

While the elastic instability of a growing multilayer
material gives rise to wrinkling and folding patterns that
appear similar to those observed in vivo, the material
that makes up the white matter of the brain is known to
be highly anisotropic, consisting of pre-stretched, axonal
fiber bundles [8,9]. It is not clear whether and how this
anisotropy might impact the relatively simple elastic be-
havior discussed above. Studies in developing chick em-
bryos [10] indicate that the fibrous structure is relatively
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Fig. 1. Setup of the mathematical model.

passive and, further, that the fiber orientation is a conse-
quence of the folding pattern, rather than its cause. Simi-
larly, many other biological tissues are reinforcedwith col-
lagen fibers, such as tendons and ligaments [11], annulus
fibrosus in the spinal cord [12] and arterial walls [13–15].

In this paper we consider a model system that is moti-
vated by the various tissues in the brain during develop-
ment: a slab of homogeneous elastic tissue (representing
thewhitematter) is connected to a thin layer of a stiffer tis-
sue (representing the cerebral cortex). The setup is shown
schematically in Fig. 1 and is similar in spirit to other mod-
els of cerebral cortex folding [16,1,17]. In each region, we
assume that the material is elastic with reinforced fibers
and a fiber pre-stretch. We study the influence of the fiber
orientation and of the pre-stretch by direct computational
simulations. We then compare these results with those of
a linear stability analysis.

2. The model

In the reference configuration, the two-layer material
is described by the coordinates X = (X, Y , Z), shown in
Fig. 1, with the interface between the two layers is denoted
Y = 0. Deformation of the tissue to a new configuration
parametrized by current coordinates x = (x, y, z), is
described by the mapping x = χ(X, t), where t is time,
with corresponding deformation gradient tensor F(X, t).
Both layers of tissue are assumed hyperelastic, and can be
described by strain–energy functions Wl(F) and Ws(F), for
the upper layer and the substrate, respectively.We assume
that the deformation occurs sufficiently slowly that inertial
effects can be neglected and that the strain lies in the
(X, Y )-plane.

The upper layer is modeled as a neo-Hookean material
of uniform thickness H with shear modulus µl and bulk
modulus Kl, i.e.

Wl = µl(λ
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where J = det(F) and λj are the principal values of the
left Cauchy–Green tensor F

T
F, where F = J−1/3F. The ma-

terial is modeled as a standard fiber-reinforced material.

Table 1
Benchmark parameters used in the computational simulations. Allmoduli
are dimensionless.

Variable Symbol Benchmark value

Fiber volume fraction ϕf 0.1
Matrix volume fraction ϕm 0.9
Upper layer bulk modulus Kl 3µl = 30
Substrate bulk modulus Ks 3
Upper layer shear modulus µl 10
Fiber-stiffness µf 10
Fiber pre-stretch λf 1.0

That is, the substrate is modeled as a neo-Hookean elas-
tic half-space, in the region Y < 0. This half space con-
tains two families of fibers which are assumed to con-
tribute to the strain–energy density at the lowest possi-
ble positive powers in the fiber strain. For simplicity, we
assume that thematrix and fibers experience the same de-
formation gradient, so the energy of the substratemay thus
be written using an additive decomposition in the form
Ws = ϕmWm + ϕf Wf where
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Here ϕf and ϕm represent the volume fractions of all fibers
and matrix, respectively, while

I(i)4 = (N(i))TFTFN(i), (i = 1, 2),

where the unit vector N(i) (i = 1, 2) is the direction in
which fiber family (i) is aligned in the reference configura-
tion. We have therefore assumed that the fibers are equal
and opposite (with angle±β with the X-direction). Finally,
λf is the fiber-prestress, which is assumed constant. For
λf < 1, the fibers are under tension in the reference con-
figuration. It should be noted that this constitutive model
allows the fibers to bear compressive loading [18], which
is usually neglected when modeling tissues reinforced by
collagen fibers such as arteries [14].

We non-dimensionalize all lengths by the thickness of
the upper layer,H , and all moduli byµs, i.e. we takeµs = 1
without loss of generality. Using a Poisson ratio for both
layers of approximately 0.35 [19], we take the bulk moduli
Ks ≈ 3, Kl ≈ 3µl. The values of other fixed parameters are
based on those relevant for brain tissues and are given in
Table 1.

Growth of the material is mimicked by uniform com-
pression of the two-layer material parallel to the X direc-
tion. The key parameter controlling this compression is the
end-shortening d = 1L/L.

2.1. Methods

The model is solved implicitly using an ABAQUS UMAT,
which for a given deformation gradient tensor F requires
both the corresponding Cauchy stress tensor σ and a
stiffness tensor C. The first Piola stress tensor for the neo-
Hookean component of each layer is computed using a
predictor–correctormethod used previously by [20], based
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