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a b s t r a c t

The existence of characteristic strain rates in rate-dependent material models, corre-
sponding to rate-independent model behavior, is studied within a back stress based rate-
dependent higher order strain gradient crystal plasticity model. Such characteristic rates
have recently been observed for steady-state processes, and the present study aims to
demonstrate that the observations in fact unearth amore widespread phenomenon. In this
work, two newly proposed back stress formulations are adopted to account for the strain
gradient effects in the single slip simple shear case, and characteristic rates for a selected
quantity are identified through numerical analysis. Evidently, the concept of a character-
istic rate, within the rate-dependent material models, may help unlock an otherwise inac-
cessible parameter space.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Strain gradient plasticity theories have become an es-
tablished part of contemporary solid mechanics due to the
increasing interest in micron and nano scale plasticity. Ex-
periments have demonstrated that size-dependent behav-
ior, in terms of increased hardening and/or strengthen-
ing, is associated with spatial gradients of plastic strain
in ductile crystalline materials (see e.g. [1,2]). The plas-
tic strain gradients are accommodated by a portion of lat-
tice defects, often referred to as geometrically necessary
dislocations (GNDs), which leads to a long range internal
stress field. Many gradient theories of plasticity have been
proposed to capture size-effects, and although so-called
lower order theories have been explored (e.g. [3–5]), the
common approach involves theories of a higher order na-
ture, which enable micro-structural boundary conditions
(e.g. [1,6–13]). The present study employs the rate-
dependent non-work conjugate type (or back stress based)
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higher order theory formulated by Kuroda and Tver-
gaard [14,15]. In this type of theory the virtual work prin-
ciple remains the conventional one, while the evolution of
GND densities is accounted for through additional differ-
ential equations. Here, a back stress, representing the long
range internal stresses due to pile-up of GNDs, affects the
plastic slip rate as kinematic hardening.

In the following study the existence of a character-
istic slip rate, at which a specific macroscopic quan-
tity becomes independent of the rate sensitivity expo-
nent, will be demonstrated through numerical analysis
of the idealized simple shear case for a single crystal.
The adopted methodology represents a promising tool for
obtaining rate-independent results using rate-dependent
frameworks, and the extent of thematter remains to be ex-
plored. The idea of a characteristic rate was first discussed
in detail by Nielsen and Niordson [16] in relation to con-
ventional rate-dependent steady-state modeling and later
exploited in [17] to extract rate-independent results froma
scale-dependent steady-state framework. Nielsen [18] also
found similar results for steady-state sheet rolling. Char-
acteristic rates may exist for a wide range of other struc-
tural problems, and a broader sense of the phenomenon is
demonstrated through the results of the present study.
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The paper is structured as follows. The strain gradient
plasticity model and adopted back stress formulations are
briefly outlined in Section 2, (details can be found in [14,15,
19,20]). The boundary value problem treated is described
in Section 3, after which, a series of numerical results are
presented in Section 4. The study is concluded in Section 5.

2. Strain gradient crystal plasticity model

The present study employs the strain gradient crys-
tal plasticity theory proposed by Kuroda and Tvergaard
[14,15] within a conventional rate-dependent small strain
elasto-viscoplastic framework. Hence, the total strain rate
is given by; ε̇ij =


u̇i,j + u̇j,i


/2, which is additively de-

composed into an elastic part, ε̇e
ij, and a plastic part, ε̇p

ij , so
that ε̇ij = ε̇e

ij + ε̇
p
ij . Plastic deformation occurs as a result

of crystallographic slip on the individual slip systems, and
thus, the Cartesian components of the plastic strain rate is
given in terms of the slip rate, γ̇ , on the α’th slip system, as

ε̇
p
ij =


α

γ̇ (α)P (α)
ij ,

P (α)
ij =

1
2


s(α)
i m(α)

j + m(α)
i s(α)

j


.

(1)

The superposed dots denote material time derivative, P (α)
ij

is the Schmid orientation tensor, and unit vectors s(α)
i and

m(α)
i specify the slip direction and the slip plane normal,

respectively (see Fig. 1). The equilibrium equations for
the non-work conjugate formulation are given by con-
ventional stress equilibrium in absence of body forces;
σij,j = 0, where the Cauchy stress rate tensor is given by;
σ̇ij = Lijkl


ε̇kl − ε̇

p
kl


, in which Lijkl is the fourth order elas-

tic stiffness tensor. Thereby, the conventional incremental
principle of virtual work reads

V
Lijklε̇klδε̇ijdV =


V

Lijklε̇
p
klδε̇ijdV +


S
Ṫiδu̇idS,

Ṫi ≡ σ̇ijnj, (2)

where Ṫi are the traction rates, ni is the outward unit
normal to the surface S bounding the volume V . In a
two dimensional setting, an additional partial differen-
tial equation accounts for the evolution of GND density;
1/bγ (α)

,i s(α)
i + ρ

(α)
G = 0, where b is the magnitude of the

Burgers vector, and ρ
(α)
G is the GND density of edge type

on slip system α [21]. The GND density balance equation is
expressed on weak form as

1
b


V

δρ,is
(α)
i γ (α)dV =

1
b


S
δρζ (α)dS +


V

δρρ
(α)
G dV ,

ζ (α)
≡ γ (α)nis

(α)
i , (3)

where δρ is aweighting function (or virtual GND density).1

1 For a detailed discussion on themicro-structural boundary conditions
see [15].

A perfectly plastic, gradient-enhanced version of the
widely used conventional power law slip rate relation
[22,23] is employed, so that

γ̇ (α)
= γ̇0sgn


τ (α)

− τ
(α)
b


|τ (α)

− τ
(α)
b |

τ0

1/m

, (4)

where γ̇0 is a reference slip rate, τ (α) is the Schmid
stress (τ (α)

= σijP
(α)
ij ), τ

(α)
b is a back stress, m is the

rate sensitivity exponent, and τ0 is the critical resolved
shear stress.2 The back stress, τ (α)

b , is phenomenologically
related to the distribution of the GND density, and
accounts for the long range internal stresses due to
dislocation pile-up. In the present study, two back stress
formulations, proposed in [19], are adopted. One is a
thermodynamically consistent formulation derived from a
free energy potential

τ
(α)
b = µτ0bµLµ+1

ρ(α)
G

+ ρ0

µ−1
ρ

(α)
G,i s

(α)
i ,

0 < µ ≤ 1, (5)

where ρ0 is a non-zero numerical parameter, which
resembles the presence of statistically stored dislocations
(see e.g. [24,9]). Note that Eq. (5) corresponds to a quadratic
free energy for µ = 1.

The second back stress relation employed in the present
study is given by the piece-wise function,

τ
(α)
b =


bτ0L2ρ

(α)
G,i s

(α)
i , for |τ

(α)
b | ≤ τT

sgn

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
bκτ 1−κ

T τ κ
0 L

2κ
ρ(α)

G,i s
(α)
i

κ , for |τ
(α)
b | > τT

, (6)

where 0 ≤ κ ≤ 1 is assumed and τT defines a transition
point, from a quadratic free energy based back stress, into
a power law dependence on the GND density gradients.
Note that Eq. (6) corresponds to a quadratic free energy
for κ = 1, but thermodynamical consistency is not
guaranteed for other values of κ . However, the numerical
solutions presented, have been found to satisfy positive
dissipation throughout the loading history, such that;
σijε̇

p
ij =


α τ (α)γ̇ (α)

≥ 0.
For a detailed description of the adopted back stress

formulations and choice of model parameters see [20,19].

3. Boundary value problem

The single slip simple shear problem, with positive slip
in the x2-direction, is considered in order to demonstrate
the rate-dependent behavior of the adopted back stress
based strain gradient plasticity model (see Fig. 1 for a
schematic illustration and definition of the slip system).
The following model parameters are used throughout:
Young’s modulus E = 130 GPa, Poisson’s ratio ν = 0.3,
τ0 = 50 MPa, and b = 0.286 nm. The following two back
stress model parameters are used: ρG,0 = 105 mm−2 and

2 Note that for τ
(α)
b equal to zero, Eq. (4) reduces to the conventional

theory.
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