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A B S T R A C T

Conventional single-lap adhesive joints between identical adherends achieve ultimate strength only after
significant inelastic deformation of the adhesive and perhaps also the adherends. However purely elastic
analysis provides insights and is relevant to fatigue initiation or brittle failure. We extend classical beam-based
elastic results, both ‘within the bond’ (deriving more-accurate peak peel stress from the joint-edge moment) and
‘beyond the bond’ (determining the edge moment from adherend dimensions, remote boundary conditions, and
load).

Within the bond, we show that peak adhesive equivalent stress and principal stress are minimized when the
bond length exceeds four characteristic lengths of the elastic-foundation shear stress equation. This makes
simplified ‘long’ joint formulas attractive for initial design. We then examine how well the long-joint predicted
peak peel stress matches plane strain finite element analysis, and empirically capture a peel-stress end effect due
to nonzero adhesive Poisson ratio. With this end-effect correction, the limit of useful accuracy can be expressed
as a ratio Ra of (adherend axial stiffness) to (adhesive axial stiffness) being > a number of order 102-103

depending on Poisson ratio. This limit supplements the Goland and Reissner proposed applicability limit for
elastic foundation analysis, expressed as a limiting ratio Rv of through-thickness or vertical stiffnesses.

Outside the bond, Timoshenko-style beam-column expressions are used to derive a simplified joint-edge
moment factor. While similar in spirit to the edge-moment determination of Goland and Reissner for infinite-
length pinned adherends, treating the bond region as a rigid block leads to simpler nonlinear expressions, and
captures the moment-reducing benefits of shorter (finite-length) adherends and fixed-slope end conditions.
Joint rotation effects become dominant when TL E I>2 (L is adherend free length, T is tensile load), then joint
rotation magnitude depends on TD E I/2 (D is lap length).

1. Introduction

The single lap joint (SLJ) is common because fabrication is so
convenient. The need for adherend dimensional precision is low, and
virtually no forming or machining is required. The already-flat surfaces
of the bars or sheets to be joined are simply overlapped with adhesive,
squeezed together, and fixtured at a desired separation until the
adhesive hardens [1]. While early analyses of lap joint adhesive stress
were strictly elastic in character, it is now recognized that the ultimate
strength of aerospace sheet metal bonds is developed only after plastic
straining of the adhesive and possibly adherends. Even so, simple
elastic analyses are not irrelevant as they provide a foundation for
understanding joint mechanics. In addition, there may be joints for
which brittle fracture or fatigue initiation are a greater concern than
ultimate strength involving plasticity. It is from that perspective that
this purely elastic investigation was conducted.

Goland and Reissner [2] introduced the partition of lap joint

analysis into ‘inner’ and ‘outer’ problems. For the inner problem they
assumed the application of joint-edge force and bending moment. Then
for the case of significant through-thickness adhesive compliance, they
developed the well-known approximate beam-on-elastic-foundation
model, and computed peak peel stress due to those edge loads. For
the outer problem, they used the governing equation for a beam with
tension (the adherend), connected to a finite-length double-thickness
beam (the joint region). Their main resulting formula gave the edge
moment applied to the joint region, as a function of load, for the case of
infinite length adherends with moment-free end supports. Of course,
the foregoing is far from a complete list of the accomplishments in their
seminal paper.

Although credible numerical elastic-plastic nonlinear analyses are
now routine, specific quantitative results are not an ideal design tool.
One also needs insight into trends and limits, and if possible, simple
algebraic estimates to guide a design approach. The purpose of this
investigation is to extend certain aspects of elastic lap-joint analysis,
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with the desired outcome of useful simple formulas.
In Section 2, we justify a focus on ‘long’ joints which exhibit length-

independent peak stresses. We begin with well-known elastic-founda-
tion formulas for averaged peel and shear stress in the adhesive of
finite-length joints (such through-thickness smeared values are quite
representative of adhesive midline stresses, as long as the joint is well
modeled as beams connected by an elastic foundation – according to
Goland and Reissner [2], that is when the elastic layer vertical
compliance is not too small). Assuming approximately zero midline
axial strain, plane-strain elastic relations are used to approximate all
adhesive stress components from the peel and shear stress, permitting
the equivalent stress and greatest principal stress to be computed.
Since their peak values are always found at the joint ends (apart from a
numerically determined end-effect stress reduction covered in Section
3), we examine those joint-end values as a function of overlap length. It
is observed that the peak ‘equivalent stress’ (for both pressure-
independent and pressure-sensitive yield) and peak principal stress
reduce towards asymptotically minimum values as the joint is length-
ened beyond about four characteristic lengths of the shear stress
equation. For design purposes, it therefore seems reasonable to specify
that joints should routinely exceed this minimum length. This permits
use of the substantially simpler long-joint peak-stress formulas pre-
sented by Bigwood and Crocombe [3].

For such ‘long’ joints, Section 3 compares the peel stress σ
determined by elastic foundation analysis to σyy on the adhesive
midline computed by plane strain finite element analysis. For zero
Poisson ratio of the adhesive, these match quite well all along the
midline, over a large range of joint parameters. But for nonzero
adhesive Poisson ratio an end effect is observed (over an axial distance
proportional to the geometric mean of adhesive thickness and adher-
end thickness) that truncates the peel stress peak due to loss of
horizontal constraint. By curve fitting we determine an empirical
expression for the end-effect distance, and combine this with the beam
on elastic foundation (BEF) stress solution to approximate the finite
element analysis (FEA) peel stress peak (which is always lower than the
unmodified BEF peak).

When the corrected elastic foundation peak peel stress is compared
to the peak peel stress computed by FEA, agreement is good within a
‘region of applicability’ in joint-parameter space, whose boundary is
based on Ra, the ratio of adherend to adhesive axial stiffness's. This
supplements the well-known Goland and Reissner [2] applicability
boundary for elastic foundation analysis, which may be expressed in
terms of the ratio Rv of through-thickness (vertical) stiffness's. Both
criteria agree in excluding too-stiff adhesive from elastic-foundation
analysis.

In Section 4 we turn to the ‘outer’ problem, in order to extend the
Goland and Reissner [2] analysis of edge moment factor, k . We adapt
the well-known beam-column formalism presented in Timoshenko and
Gere [4], and approximate the thick overlap region as a rigid block.
This allows us to give results for adherends of finite length, and include
not only moment-free but fixed-slope end conditions. The resulting
edge-moment expressions are both more general and simpler.

There exists an extensive literature on the simplified elastic analysis
of single lap joints, as outlined in da Silva et al. [5] and extended to
dynamic loading by Vaziri et al. [6,7] and others. Many investigators
including Goland and Reissner [2], Volkersen [8] and Hart-Smith [9]
used the elastic-foundation approach to investigate approximate
through-thickness shear and peel stress distributions of a relatively
compliant adhesive layer. In addition, geometrical nonlinearity, which
arises from tension rotating the joint region to bring remote adherends
closer to coaxial alignment, was long ago recognized by Goland and
Reissner [2]. They used axially-loaded beam analysis to determine the
edge moment (i.e., the adherend centroidal bending moment at the
joint edge) for infinitely long, pinned adherends. Luo and Tong [10]
reviewed this and other treatments of rotation.

In addition to many analytical investigations, finite element ana-

lyses in D2 and D3 have been performed by Adams and Peppiatt [11],
Her [12], Li and Lee-Sullivan [13], Tsai and Morton [14], Goncalves
et al. [15], Ashrafi et al. [16], Haghpanah et al. [17] among others.
Some of these were elastic-only, while others included adhesive and/or
adherend plasticity. To navigate this large literature, we have relied on
authoritative and comprehensive reviews by Minford [18], Da Silva
et al. [5], and Adams et al. [19]. In the publications we have explored,
we have not encountered the results developed here.

2. Adhesive failure stress from elastic foundation analysis

The purpose of this section is to show that ‘long’ joints (defined
relative to the characteristic length λs of the elastic-foundation equation
for adhesive shear stress) exhibit the lowest peak ‘equivalent stress’
responsible for yield, and also the lowest peak principal stress
(responsible for brittle fracture). Assuming that designers will generally
exploit this strength advantage, it seems reasonable to initiate designs
with the simple ‘long joint’ formulas for peak stress, as provided by
Bigwood and Crocombe [3].

Consider a joint with 180o symmetry loaded by a force in the joint
plane (thus giving rise to maximum adherend bending moment with no
shear force, see Fig. 1). The well-known elastic-foundation governing
equation for peel stress σ is [5]:
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Here we have used equivalent Young's moduli with an overbar,
defined as follows: For the adherend it is the plane-strain Young's
modulus E E ν= /(1 − )2 , although this won’t properly represent axial
stretching unless w max L D> > ( , ), where L is the free adherend
length, D is the joint overlap and w is the specimen width perpendi-
cular to the axis of loading. For adhesive away from the edges and
corners of the joint, we use the transversely constrained modulus:
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(While this expression suggests unbounded stiffness as ν →0.5a , in
fact Ea should not be taken as independent of νa. Polymer bulk modulus
Ka arising from interatomic repulsive forces is relatively unvarying in
the range of 1 − 5 GPa, whereas the moduli capturing distortional
behavior such as E K ν=3 (1 − 2 )a a a and G K ν ν=(3 /2)(1 − 2 )/(1 + )a a a a both
reduce toward zero as Poisson ratio approaches 0.5. It can be useful to
recast some of the below expressions with the adhesive moduli
expressed in terms of Ka.).

The solution of the peel stress equation for an arbitrary length bond
subjected to an applied joint-edge moment per unit width Ft /2 (where
F is force per unit width of specimen) is a well-known symmetric
expression [5]:
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where

Fig. 1. Canonical loading of a SLJ: symmetric with no force obliquity, hence resulting in
maximum edge moment.
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