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A B S T R A C T

In this study, a Frequency Response Function (FRF) -based model updating method, was modified for the
purpose of the identification of viscoelastic constitutive models. A steel beam, bonded to a heavy rigid steel block
by a layer of Sikaflex-252 polyurethane adhesive, was employed as the test setup. Using the concept of Optimum
Equivalent Linear FRF (OELF), accelerance FRFs were measured at different random excitation levels which
demonstrated the nonlinear behavior of the adhesive. Using a finite element model, the sensitivity analysis
showed that the selected FRFs are more sensitive to the storage and loss moduli of the adhesive near the
resonances. Therefore, firstly, both of the storage and loss moduli were identified near each resonance
separately and the results have been compared with the results based on Inverse Eigen-sensitivity Method
(IEM). In continuation, five viscoelastic constitutive models were utilized and identified to characterize the
dynamic mechanical properties of the adhesive at different excitation levels. Applying the identified models, the
correlation between the FRFs of the FE models and the experimental ones were tested. The results show that
amongst the identified models, The Standard Linear Solid (SLS) model in parallel with a viscous or constant
structural damper (stiffness proportional) results in better correlation with experiments. Increasing the
excitation level, the storage modulus of the adhesive decreases, whereas the loss modulus increases, especially
at high frequencies.

1. Introduction

Nowadays, there are continually growing trends toward application
of polyurethane adhesives in many different industries such as wind
turbines, construction, automotive and transportation. This type of
adhesives requires fewer curing steps than epoxies, resulting in
reduced production costs. Some of the other advantages are fatigue
resistance, crack retardation and good damping characteristics. So,
establishing new techniques to build and tune the Finite Element (FE)
models for simulation of the static and dynamic behavior of structures
with adhesively bonded joints is an increasing need. He [1] reviewed
some of the published work until 2010, relating to the FE analysis of
the adhesively bonded joints, in terms of static loading analysis,
environmental behaviors, fatigue loading analysis and dynamic char-
acteristics of the adhesively bonded joints.

In response to dynamic loading, most of adhesives demonstrate
viscoelastic behavior that may depend on temperature, excitation
frequency, excitation amplitude, pre-stress and humidity. Therefore,
definition of the viscoelastic constitutive model has a crucial effect on
the accuracy of the FE model of an adhesively bonded joint. The
viscoelastic constitutive models (viscoelastic characteristics) are not
readily available through manufacturers' data sheets in which usually
static, linear characteristics of the adhesives are provided.
Consequently, identification of viscoelastic constitutive models for the
adhesives is an inspiring research topic in dynamic FE modelling of
adhesively bonded joints.

There are extensive studies, with different methods, on the identi-
fication of viscoelastic constitutive models of the adhesives. Recently,
Najib and Nobari [2] classified these methods into two categories,
namely, direct and inverse identification methods, that is repeated here
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briefly with some instances.
In the direct methods, for a prepared test specimen, dynamic test

data are obtained using a selected experimental procedure, for
instances, dynamic mechanical thermal analysis (DMTA)
(Barruetabena et al. [3]) or resonance testing (Maheri and Adams
[4]). These dynamic data can be converted directly to the dynamic
stress-strain data or equivalently to the dynamic modulus at a specific
frequency or strain rate. Over a frequency range, the parameters of a
viscoelastic model can be obtained by means of curve fitting.

In the category of inverse methods the main point is that the
measured dynamic data cannot be converted directly to the dynamic
stress-strain data in the adhesive region of the specimen. So, an inverse
problem solving is preferable, even inevitable. The methods based on
the FE model updating are examples of inverse methods [2,5–7].

A recent instance of the methods based on the FE mode updating is
the work of Najib and Nobari [2] in which they modified a model
updating method based on Frequency Response Function (FRF),
referred to as the Response Function Method (RFM), for identification
of the parameters of the viscoelastic constitutive model. For a steel
beam bonded to a heavy rigid steel block by a layer of adhesive, they
measured the accelerance FRFs at different excitation levels, using the
concept of Optimum Equivalent Linear FRF (OELF) and identified the
parameters of the nonlinear viscoelastic constitutive model. They
validated the identified nonlinear viscoelastic model through correla-
tion tests between the FRFs of the updated FE model and the
experimental ones.

In this paper, the method developed in [2] will be implemented on
5 different viscoelastic models, in order to identify their parameters
and to see which one of the models gives the best prediction of the
behavior of the adhesive in question. In this respect, for a beam bonded
to a rigid support via a layer of elastic adhesive, the accelerance FRFs
were measured experimentally, using the concept of Optimum
Equivalent Linear FRF (OELF). These FRFs were used to update the
FE model of the bonded beam. The results will be compared with the
ones obtained based on IEM. Also, the nonlinearity effects, attributable
to the excitation level, will be examined.

2. Formulation of RFM

For the first time, the RFM was proposed by Lin and Ewins [8]. The
reader is referred to Najib and Nobari [2] for a brief introduction and
to Imregun et al. [9] and Visser [10] for more details and computa-
tional aspects. The updating equation that was used in this study is [2]:

ω H ω H ω ω ω ωH Z H− ( ) − ′ ( ) = ( )∆ ( ) ′ ( )Aij Xij Ai X j
2 T (1)

where ω is the circular frequency in (rad/sec), HAij is the element in i-th
row and j-th column of the analytical receptance matrix (HA), H′Xij is
the element in i-th row and j-th column of the experimental inertance
matrix (H′X), HAi

T is the transpose of i-th column of the analytical
receptance matrix and ωH′ ( )X j is the j-th column of the experimental
inertance matrix. Z∆ is the dynamic stiffness error matrix,

Z Z Z∆ = −X A, where ZA and ZX are the dynamic stiffness matrices of
the analytical and experimental models of structure, respectively. In
practice, it is impossible to measure complete set of H′X j in (1), so the
unmeasured FRFs in H′X j will be filled with their analytically-derived
counterparts [9]. Since this is an approximation, the method will be an
iterative scheme and the convergence must be checked at each iteration
step [9].

3. Modification of the RFM for viscoelastic material
properties identification

This procedure was presented in [2] and here is repeated. In the
frequency domain, the Fourier transforms of stress and strain (σ and ε)
are related by:

E ω σ ω
ε ω

E ω E ω*( ) = ( )
( )

= ′( )+j ( )′′
(2)

where j = −1 and E*, E′ and E′′ are referred to as dynamic (or
complex) modulus, storage modulus and loss modulus, respectively.

The FE model, that contains two different materials, namely,
adherend and adhesive, is considered to modify RFM (Eq. (1)) for
identification of unknown viscoelastic properties of the adhesive (E′
and E′′). The material properties of the adherend are known, whereas
those for adhesive are unknown except its density. So, the dynamic
stiffness matrix of the FE model can be written down as:

ω ω ω E ωZ M K C D K( ) = − + + j + j + * ( * ( ))2
adherend adherend adherend adhesive (3)

where M is the complete mass matrix and K, C and D with the
subscript "adherend" are those parts of global stiffness, viscous
damping and structural damping matrix that are related to the
elements of adherend portion of the model and are known. K* is the
complex stiffness matrix of the adhesive part of the model, i.e.:

E ω E ω E ωK K K* ( * ( )) = ′( ′( )) + j ( ( ))adhesive ′′ ′′ (4)

K′ and K′′ are the only parts of Z that are related to the E′ and E′′. So, at
a fixed ω, one can write:

Z K K∆ = ∆ ′ + j∆ ′′ (5)

For the solid element used in this study, the element stiffness
matrix is a linear function of Young’s modulus. So, assuming uniform
Young’s modulus for the adhesive layer, Eq. (5) becomes:

E
E
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∂
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′′

′′
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(6)

Defining S as the sensitivity of stiffness matrix,

E E
K K S∂ ′

∂ ′
= ∂

∂
= = constant

′′

′′ (7)

Eq. (6) becomes,

E E EZ S S∆ = (∆ ′ + j∆ ) = ∆ *′′ (8)

and by the definition of

B ω
ω H ω H ω

ω ωH SH
( ) =

− ( ) − ′ ( )
( ) ′ ( )ij

Aij Xij
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T (9)

Eq. (1) reduces to

E ω B ω∆ *( ) = ( )ij (10)

The Eq. (10) is the modified version of RFM (Eq. (1)) for
identification of viscoelastic properties and it is a complex equation, so:
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ij
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The Eq. (11) can be used to update E′ and E′′ at each frequency
point. Also, one can write down these equations for a range of
frequency points and use least square solution to identify constant
values of the E′ and E′′ over a frequency range. This will be discussed
more in the Section 5.

4. Formulation of IEM

After the original work of Fox and Kapoor [11], the formulation of
the IEM has been presented by many researchers for instance by
Naraghi and Nobari [7] and here is repeated in brief to be compatible
with the present paper notation. Using the same notation as in Section
3, the complex eigen-value problem for the FE model can be written as:

λ ϕK K K M( + ′ + j − ){ } = 0r radherend adhesive ′′adhesive (12)

where λr and ϕ{ }r are the r-th eigen-value and eigen-vector of the
model and ϕ{ }r is normalized such that
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