Accepted Manuscript

OPTIMIZING THE DEVELOPMENT AND MANUFACTURING OF 56SiCr7 LEAF SPRINGS

Roselita Fragoudakis, Georgios Savaidis, Nikolaos Michailidis

PII: S0142-1123(17)30230-X

DOI: http://dx.doi.org/10.1016/j.ijfatigue.2017.05.016

Reference: JIJF 4344

To appear in: International Journal of Fatigue

Received Date: 11 January 2017 Revised Date: 10 April 2017 Accepted Date: 21 May 2017

Please cite this article as: Fragoudakis, R., Savaidis, G., Michailidis, N., OPTIMIZING THE DEVELOPMENT AND MANUFACTURING OF 56SiCr7 LEAF SPRINGS, *International Journal of Fatigue* (2017), doi: http://dx.doi.org/10.1016/j.ijfatigue.2017.05.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

OPTIMIZING THE DEVELOPMENT AND MANUFACTURING OF 56SiCr7 LEAF SPRINGS

Roselita Fragoudakis^{1(*)}, Georgios Savaidis², Nikolaos Michailidis³

(*)Email: fragoudakisr@merrimack.edu

tel: +1 (978) 837-5928

ABSTRACT

This study investigates the microstructure, surface mechanical properties, and fatigue life of 56SiCr7 leaf specimens produced under serial conditions. The investigation occurs at different stages of the manufacturing process of the leaf springs; mainly heat treatment and surface treatment by shot peening. Macro-hardness and micro-hardness measurements, at the Rockwell C and Vickers scales, respectively, are taken following the thermal treatment and surface shot peening treatment steps of the manufacturing process. Residual stress measurements accurately show the induction depth of the residual stresses in the material. The above measurements are used to determine how heat treatment and shot peening affect the mechanical properties of the surface and core of the spring material. Though the performed micro-hardness measurements clearly indicate surface decarburization effects and quantify the decrease in strength, they do not reveal the insufficient martensitic transformation during the thermal treatment of selected specimens (protocol 1). The macro-hardness measurements are completely insensitive in revealing the surface decarburization and phase transformation phenomena that take place in the investigated case. Solely the microstructural investigations with the aid of a metallographic optical microscope revealed the degree of phase transformation achieved by the thermal treatment. The effect of the individual manufacturing processes, of thermal treatment and shot peening, on the fatigue life of the leaf springs is demonstrated by experimental Wöhler curves at stress amplitudes between 250 MPa and 600 MPa. Two stress ratios are examined, R=0 and R=0.4, which reflect the stress ratios recommended by the automotive industry. The corresponding Haigh diagrams and mean stress sensitivity factors can be applied for fatigue life assessments of new leaf spring products produced using the suggested protocols.

Keywords: hardness; microstructure; fatigue life; residual stresses; leaf springs.

INTRODUCTION

Load carrying-applications, such as in axle suspension springs in the automotive industry, will typically use components made of high strength steel. The formation of nucleation sites, often

¹Department of Mechanical Engineering, Merrimack College, Massachusetts, USA

²Aristotle University of Thessaloniki, Department of Mechanical Engineering, Laboratory of Machine Elements and Machine Design, 54124 Thessaloniki, Greece

³Aristotle University of Thessaloniki, Department of Mechanical Engineering, Physical Metallurgy Laboratory, 54124 Thessaloniki, Greece

Download English Version:

https://daneshyari.com/en/article/5014952

Download Persian Version:

https://daneshyari.com/article/5014952

<u>Daneshyari.com</u>