Accepted Manuscript

Fatigue life estimation of screws under multiaxial loading using a local approach

A. Sorg, J. Utzinger, B. Seufert, M. Oechsner

PII:	S0142-1123(17)30285-2
DOI:	http://dx.doi.org/10.1016/j.ijfatigue.2017.06.034
Reference:	JIJF 4390
To appear in:	International Journal of Fatigue
Received Date:	18 April 2017
Revised Date:	23 June 2017
Accepted Date:	26 June 2017

Please cite this article as: Sorg, A., Utzinger, J., Seufert, B., Oechsner, M., Fatigue life estimation of screws under multiaxial loading using a local approach, *International Journal of Fatigue* (2017), doi: http://dx.doi.org/10.1016/j.ijfatigue.2017.06.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

International Journal of Fatigue

Fatigue life estimation of screws under multiaxial loading using a local approach

A. Sorg^{a/b}, J. Utzinger^a, B. Seufert^a, M. Oechsner^b

^a Daimler AG, Béla-Barényi-Straße 1, 71063 Sindelfingen, Germany ^b Institut für Werkstoffkunde, Technische Universität Darmstadt, Grafenstraße 2, 64283 Darmstadt, Germany

Abstract

The fatigue life estimation of screws usually applies a nominal approach on the basis of normal forces. For time-dependent, multiaxial loading of screws this method is not accurate enough; a related method has not been specified yet. In this regard, the current contribution discusses the incorporation of a local approach to predict durability. Therefore, Schneider's method is enhanced to generate an efficient procedure for calculating the fatigue-induced damage at the screws. The failure criterion is the technical relevant incipient crack length in the first load-bearing thread turn of the screw. By incorporating a submodelling technique, the presented method leads to damage values over the circumferential angle of the thread.

In order to validate the method, the computed damage values are compared with experimentally determined results. In the experiments, the incipient crack length in the thread of the screws is measured by an advanced technique using a rod-type strain gauge.

Keywords: life prediction, load histories, bolted joints, notches, strain gauging

Corresponding Author:

Andreas Sorg andreas_sorg@gmx.de +49 7031 90 89804 +49 172 7751095 Daimler AG Bela-Barenyi-Strasse 1 71063 Sindelfingen Germany

Nomenclature

σ_{ij}	components of stress tensor	$R_{p0.2}$	offset yield strength
ε _{ij}	components of strain tensor	\mathbf{R}_{m}	tensile strength
$(\cdot)_{ij}$	components of linear transfer tensor	E	young's modulus
$F_{N(\cdot)}$	normal component of the section force	ν	Poisson's ratio
$F_{S(\cdot)}$	shear component of the section force	t _n	time point of the load spectrum
$M_{B(\cdot)}$	bending component of the section	D	damage
	moment	\mathbf{D}_{i}	partial damage
$M_{T\left(\cdot\right)}$	torsion component of the section	D*	fatigue life in terms of distance
	moment	$\mathbf{P}_{\mathrm{SWT}}$	damage parameter (Smith, Wattson,
$(\cdot)_{(\cdot),\mathrm{UL}}$	unit load		Topper)
$(\cdot)_{(\cdot),ini}$	initial force/moment	P_{J}	damage parameter (Vormwald)
$(\cdot)_{(\cdot),VF}$	vertical wheel force	L	distance of load spectrum
$(\cdot)_{(\cdot),LF}$	lateral wheel force	ni	number of cycles per rainflow class
$(\cdot)_{(\cdot),BT}$	breaking torque	N_{Ai}	number of cycles until incipient crack
$a_{i,}b_{i}$	polynomial coefficients	$\Delta \sigma_{eff}$	effective stress width
φ	circumferential angle of the wheel	$\Delta \epsilon_{p,eff}$	effective plastic strain width
α	circumferential angle of the thread	σ_{N+S}	stress induced by normal and shear force
$\Delta\sigma_{relax}$	stress relaxation value	$\sigma_{N\!+\!B}$	stress induced by normal force and
Ag	uniform strain		bending moment

Download English Version:

https://daneshyari.com/en/article/5015000

Download Persian Version:

https://daneshyari.com/article/5015000

Daneshyari.com