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a b s t r a c t

This paper outlines a cyclic plasticity theory whose aim is to allow fatigue designers to make calculations
for multiaxial loads in a way as similar as possible to what they do when using the well-known Local
Strain methodology for uniaxial low–cycle fatigue problems. Thus we define concepts that translate to
multiaxial loadings the intuitive methods for stress and strains calculations based on the use of the
Ramberg-Osgood equation for the cyclic stress-strain curve, the adoption of Masing behavior with a
factor-of-two assumption to model the hysteresis loops of the material from the cyclic curve and the
invocation of the memory rule when hysteresis loops are ‘‘closed”. The present theory is based upon
the idea of distance between stress points and to calculate these distances we use the expression of
the yield criterion of the material.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The local strain or strain-life method constitutes nowadays a
standard tool for low-cycle fatigue life calculations in many indus-
tries. It has been incorporated in commercial software [1,2] and is
very well described in textbooks [3–5]. The use of the cyclic curve,
the hysteresis loops, Neuber’s rule and the memory effect is famil-
iar, in the uniaxial load case, to most engineers concerned with
low–cycle fatigue issues.

However, the extension of the Local Strain method to the mul-
tiaxial case has not achieved yet the desired degree of simplicity. It
requires three main steps at least. The first one is the development
of plastic flow rules which reproduce the way we operate with hys-
teresis loops, cyclic curves, memory effect and so on in the simple
uniaxial case. The second step would be the development of mul-
tiaxial Neuber-type rules for dealing with inelastic strains at
notches. This relies heavily on the use of a theory of plasticity
and hence on the previous step. There are many proposals in this
respect, starting with the pioneering work of Hoffmann and Seeger
[6]. More recently, Glinka et al. [7] have obtained many important
results. The third step is probably the most difficult and is the area
where more work has been done so far: the multiaxial cycle count-
ing and fatigue life criteria. There are too many of them to single
any one out. A comparison of several criteria is provided in [8].
They need the stresses and strains as inputs and, therefore, they
also depend on the two previous steps.

We are concerned here with the first step. We are trying to
develop a theory of cyclic plasticity which allows fatigue designers
to make calculations for multiaxial loads in a way as similar as pos-
sible to what they do when using the well-known Local Strain
methodology for uniaxial low cycle fatigue problems. Thus we
would like to develop a multiaxial theory where there is a method
similar to the invocation of the memory rule when hysteresis loops
are ‘‘closed”, something which is conspicuously missing from cur-
rent formulations of cyclic plasticity. Such a multiaxial memory
rule may be used to define cycle counting procedures for multiaxial
variable amplitude loading.

We have found it useful to base this theory on the idea of dis-
tance between stress points and to calculate these distances by
using the expression for the yield criterion. The theory does not
make use of yield or loading surfaces that move about in stress
space, a common ingredient of existing cyclic plasticity theories.
It uses the concept of distance in a stress space endowed with a
certain metric which is determined from the yield criterion. The
evolution and full mathematical details of the theory have been
given elsewhere [9–14] and we would just like to give here a quick
overview of the procedure. To keep the discussion at the simplest
possible level, after presenting the general ideas of the theory, we
restrict the treatment to the case of combined tension and torsion
loading. The application of the equations to the analysis of non-
proportional experiments is shown.

2. Plastic strains

The Local Strain method revolves around a simplified descrip-
tion of the stress-strain behavior. A very characteristic feature of
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the calculations of plastic strains in low–cycle fatigue problems is
the clear distinction between loading and unloading. In the uniax-
ial case, one speaks of loading when the stress goes up in the cycle
of applied stress and of unloading when it goes down. During the
first quarter of the very first cycle, we ‘‘move” along the cyclic curve
(dashed line in the lower part of Fig. 1) until unloading starts,
marking the first point of load reversal (point A). We then ‘‘depart”
from the cyclic curve and switch to the hysteresis loop. After a
while moving along the descending branch of the hysteresis loop,
another point of load reversal (point B) is reached, and we leave
the current branch of the loop being traversed and start a new
branch going up, and so on.

One of the key elements in the simulation of the e� r behavior
at a notch for variable amplitude loading is the correct application
of the memory effect (see [3, chapters 12–14] and [5, chapter 9]),
both for closing hysteresis loops and for switching the axes where
the Neuber’s hyperbolas are drawn for each load excursion. This is
shown to occur in Fig. 1 as one moves, for example, from point D to
point E. After reaching point E, the strain is then decreased to point
F, following the path determined by the hysteresis loop shape.
Upon re-loading, after reaching point EE0, E�E0, the material con-
tinues to point A along the hysteresis path starting from point D,
proceeding just as if the small loop E-F-E had never occurred.
The same thing happens in the loop B-C-B. As we point out later
on, this memory rule is a simplified representation of the so-
called kinematic hardening.

As can be seen, the application of the memory effect depends on
a precise control over the distance or separation, in terms of stress,
between the successive points of load reversal. Thus, for example,
when the stress is descending from C, the memory effect is invoked
at B’, where the distance between the current stress point and C
becomes equal to the distance previously established between B
and C. Distances between stress peaks and valleys are kept in a
stack for comparison, and this kind of comparison (at the applied
stress level) is really the basis of the cycle counting methods, such
as the well-known Rainflow algorithm.

It is not at all clear how we can perform these checks in a mul-
tiaxial situation, where some of the components of stress may be
increasing while others may be decreasing at the same time. Fig. 1. Uniaxial memory effect.

Nomenclature

E Young’s modulus
HðÞ function describing isotropic hardening
H�1ðÞ inverse function of HðÞ
k yield stress in pure shear (torsion)
K strength coefficient in the Ramberg-Osgood relationship
n strain hardening exponent in the Ramberg-Osgood rela-

tionship
n unit normal to the surfaces jrj ¼ constant or

q ¼ constant
n1;n2 components of unit normal
q effective distance between stress points after load

reversals
dq increment of the effective distance q
q0; q1; . . . ; qK, . . . diameters of circles C0;C1; . . .CK; . . .
dWp increment of plastic work
Y yield stress in uniaxial tension (or compression)
cp plastic shear (torsion) strain component
dcp increment of plastic shear strain component
e axial strain component
ep plastic axial strain component
dep increment of plastic axial strain component

ep plastic strain vector (linear form)
jepj magnitude of the plastic strain vector
dep increment of plastic strain vector (linear form)
jdepj magnitude of the increment of the plastic strain vector
djepj increment of the magnitude of the plastic strain vector
h angle between stress vectors
r axial stress component
r stress vector or stress point
jrj magnitude of the stress vector
djrj increment of the magnitude of the stress vector
r0;r1; . . . ;rK; . . . successive points of load reversal
r0;r1; . . . ;rK; . . . axial components of stress points

r0;r1; . . . ;rK; . . .

rc;1;rc;2; . . . ;rc;K; . . . centers of circles C1;C2; . . .CK; . . .
s shear (torsion) stress component
s0; s1; . . . ; sK; . . . shear components of stress points

r0;r1; . . . ;rK; . . .
UðÞ hardening modulus function. Derivative of H�1ðÞ
/ðÞ hardening modulus function after load reversal
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