Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short Communication

Catalytic hydrogen transfer of ketones over atomic layer deposited highly-dispersed platinum nanoparticles supported on multi-walled carbon nanotubes

Chengjun Jiang^{a,*}, Xinhua Liang^{b,*}

^a Department of Chemical and Biological Engineering, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, PR China ^b Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA

ARTICLE INFO

Article history: Received 10 September 2013 Received in revised form 2 November 2013 Accepted 4 November 2013 Available online 19 November 2013

Keywords: Atomic layer deposition (ALD) Platinum (Pt) CNT Catalytic hydrogen transfer Ketones

ABSTRACT

Hydrogen transfer of ketones, catalyzed by highly-dispersed platinum nanoparticles supported on multi-walled carbon nanotubes (MWCNTs), was studied. Pt nanoparticles were deposited on gram quantities of nonfunctionalized MWCNTs by atomic layer deposition (ALD) at 300 °C, using (methylcyclopentadienyl) trimethylplatinum and oxygen as precursors. TEM analysis showed that ~1.4 nm Pt nanoparticles were highly dispersed on MWCNTs. The heterogeneous hydrogen-transfer reactions of acetophenone indicated that an acetophenone conversion of 100% and a 1-phenylethanol selectivity of 99.0% could be obtained with a ketone to Pt mass ratio of 24,690 and a ketone to KOH mass ratio of 22 at 150 °C for 5 h. The selectivity of the Pt/MWCNT catalyst was higher than that of the commercial Pt/C catalyst, due to the highly-dispersed, uniform Pt nanoparticles and the unique porous structures of the Pt/MWCNT catalyst. The high reactivity of this catalyst for hydrogen transfer reduction were also demonstrated for other ketones.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The reduction of ketones to corresponding alcohols is one of the most important chemical processes in industry and in synthesisoriented research laboratories. Usually, ketones can be converted into secondary alcohols by reduction reactions involving a number of reducing reagents, including molecular hydrogen, metal hydrides, and dissolving metals [1]. The transfer hydrogenation of organic compounds has attracted much attention, because it is a much safer and more environmentally benign process [1–3]. In addition, the hydrogen donor (e.g., 2-propanol) is cheap and easy to handle, and no elaborate setups (e.g., high pressure reactors) are required. Homogeneous noble metal catalysts, such as Ru complexes [4–6], are known to be effective for these kinds of reactions, but they suffer from difficulties encountered in the recovery and reuse of expensive catalysts, and the necessity for co-catalysts (base and ligand).

Noble metal-based heterogeneous catalysts were also considered because of their advantages in catalyst recovery and recycling. Supported nanoparticle (NP) catalysts, such as Ni [1,7–9] and Pt [10], have been reported to act as effective and reusable catalysts for these kinds of hydrogen transfer reactions. However, such heterogeneous processes need to be improved because usage of the catalysts has been very high (i.e., 10–20 mol% Ni), while the conversion of the reactant and

* Corresponding authors. *E-mail addresses: jiangchengjun@zust.edu.cn* (C. Jiang), liangxin@mst.edu (X. Liang).

1566-7367/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.catcom.2013.11.002 the selectivity of the desired product have been very low. On the other hand, noble metal-based heterogeneous catalysts have normally been prepared by wet-chemical processing. The porous supporting materials were impregnated with an aqueous solution of noble metal precursor, and the noble metal nanoparticles (NPs) were reduced in solution by chemical reducing agents [11]. Although these methods can produce metal particles as small as several nanometers, they cannot precisely control the size of the catalytic NPs and disperse them homogeneously within the porous substrates.

Atomic layer deposition (ALD) is a layer-by-layer process [12,13] that has received increasing attention for the preparation of noble metals such as Pt [14–17], Ru [18,19] and Pd [20–22]. Due to their high cohesive energy, noble metals tend to form via an island growth mechanism (Volmer–Weber mechanism) during the initial stages of the ALD process [23]. This study describes the hydrogen transfer reduction of ketones catalyzed by Pt NPs supported on non-functionalized multi-walled carbon nanotubes (MWCNTs) deposited by ALD.

2. Experimental section

2.1. Materials

(Methylcyclopentadienyl) trimethylplatinum [(MeCp)PtMe₃] was purchased from Strem Chemicals, Inc., and the MWCNTs were purchased from US Research Nanomaterials, Inc. All chemicals of the best grade were commercially available (J&K Chemical, Aldrich, Acros, Alfa

Aesar). 3 wt.% Ru/activated carbon (Ru/C, 50.2% water content, surface area of 789 m²/g), 3 wt.% Pt/activated carbon (Pt/C, 55.2% water content, surface area of 795 m²/g), and Raney Ni (50 wt.% slurry in water, active catalyst, surface area of 90–100 m²/g and pore size of 45 µm) were purchased from Degussa. De-ionized water was used as solvent for the catalytic reactions. All materials were used as received.

2.2. Pt NPs deposited on MWCNTs by ALD

The deposition of Pt NPs by ALD was carried out in a fluidized bed reactor, which is similar to the one previously described in detail [24]. (MeCp)PtMe₃ and oxygen were used as precursors. MWCNTs, with a surface area of 360 m²/g, an outside diameter of 10–20 nm and an inside diameter of 5-10 nm, were used as the catalyst substrate. No surface functionalization was applied for the MWCNTs before Pt ALD. 1.0 g MWCNTs were loaded into the reactor. The experimental details can be found elsewhere [25]. The reaction temperature was 300 °C. Before the reaction, the MWCNTs were degassed at 300 °C for 5 h. Nitrogen gas was fed as flush gas to help remove the unreacted precursor and any by-products formed during the reaction. The dose time of the Pt precursor was 6 min, while the dose time of the oxygen was 15 min, which was sufficient for the reaction. The pressure during dosing was about 4 Torr. The system was pumped down to 50 mTorr prior to the dose of the next precursor. In this study, one cycle of Pt ALD was applied. The ALD-deposited Pt/MWCNT catalyst was directly used in the following catalytic tests without any further treatment.

2.3. Catalytic hydrogen transfer of ketones

The catalytic reactions were conducted in unstirred mini-batch reactors assembled from stainless steel Swagelok® parts. Port connectors, sealed with a cap on both ends, gave a reactor volume of about 5.0 mL. Prior to use in any experiments, the reactors were rinsed with acetone, dried, loaded with water, and conditioned at 300 °C for 30 min to remove any residual materials remaining from the manufacture of the metal parts. In a typical experiment, 0.8 g acetophenone, 37 mg KOH, 4.0 g isopropanol and 0.6 mg Pt/MWCNT were fed into the mini-batch reactor. The reactor was tightly closed, and the mixture was stirred at 150 °C for 5 h. All of the other catalysts had an identical metal mass loading, even though the total mass could have been different due to the different mass fractions of metal in the catalyst support and the different contents of the water. The reutilization of the catalysts was carried out in a 100 mL autoclave. In a typical experiment, 8 g acetophenone, 370 mg KOH, 40 g isopropanol and 6 mg Pt/MWCNT were fed into the autoclave. An identical metal loading was used for the cycling experiment of Pt/C. The reactor was tightly closed, and the mixture was stirred at 150 °C for 5 h. After the reaction, the catalyst was filtered off and dried under vacuum. Every time about 5% fresh catalyst was added to cover the catalyst lost during the filtration process. The filtrate was analyzed using an Agilent gas chromatograph equipped with a flame ionization detector and a Zebron ZB-WAX capillary column $(30 \text{ m} \times 0.32 \text{ mm} \times 0.5 \text{ }\mu\text{m})$ with a stationary phase of polyethylene glycol. The column temperature was kept at 80 °C for 3 min, and then increased to 240 °C, at a rate of 8 °C/min. The conversion of ketone and the selectivity to the desired alcohol were calculated as follows: conversion = 100 - (moles of unreacted ketone/molesfed) \times 100; selectivity = (moles of desired alcohol/moles of ketone reacted) \times 100. Yield = conversion \times selectivity/100.

2.4. Catalyst characterization

The Pt mass fraction of the Pt catalysts was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The Pt NPs were visualized with a FEI Tecnai F20 field emission gun, high resolution TEM/STEM. The particle size was measured based on about 200 particles in TEM images. The specific surface area of the particles was calculated by the Brunauer–Emmett–Teller (BET) method from the N_2 adsorption isotherms obtained at $-\,196\,\,^\circ\text{C}.$

3. Results and discussion

The atomic layer deposited Pt NPs were highly dispersed on the surface of the MWCNTs. As shown in Fig. 1, after one cycle of Pt ALD, the average particle size was 1.4 ± 0.3 nm, and the Pt content on the MWCNTs was 5.4 wt.%, based on ICP analysis. The average inside diameter of the MWCNTs was about 6 nm. The surface area of the MWCNTs decreased from 360 to 320 m²/g with the addition of 5.4 wt.% Pt. This could have been partly caused by the fact that some Pt nanoparticles blocked the micropores. If the porous structure of the MWCNTs did not change with the addition of Pt, the decrease in the surface area should have been only about 20 m²/g, which is caused by the addition of 5.4 wt.% Pt to the MWCNTs.

The Pt/MWCNT was employed for a catalytic hydrogen-transfer reaction of acetophenone. The reaction was carried out using isopropanol as a hydrogen donor, at 80–150 °C, in the presence of 4.6–9.2 wt.% of KOH. The main by-product of the liquid phase catalytic hydrogen transfer of acetophenone was ethylbenzene (as shown in Scheme 1). Control experiments indicated that the MWCNTs themselves showed no catalytic activity for the catalytic hydrogen transfer reactions since no reaction could happen in the absence of a catalyst, and there was no reaction in the absence of isopropanol (with tetrahydrofuran as a solvent).

The effects of the reaction temperature on the conversion of acetophenone and the selectivity of 1-phenylethanol with isopropanol as a hydrogen donor were studied by varying the temperature between 80 and 150 °C. As shown in Fig. 2a, the conversion of acetophenone was highly dependent on the reaction temperature. The conversion was lower at a lower reaction temperature. For example, the conversion was 42.8% at 80 °C. after 5 h of reaction, and the conversion reached 100% at 150 °C during the same reaction time. In the following studies. a reaction temperature of 150 °C was chosen. The effect of the quantity of KOH on the hydrogen transfer reduction of acetophenone with isopropanol is shown in Fig. 2. Clearly, the amount of the base was not the key factor for this reaction. The reduction of the base concentration, from 9.2 wt.% to 4.6 wt.%, diminished the conversion of acetophenone by about 0.5%. As shown in Fig. 2b, the effect of the reaction temperature on the selectivity of 1-phenylethanol was very limited. A marginal reduction in the selectivity of 1-phenylethanol was observed when the temperature increased from 80 to 150 °C. The amount of base had little impact

Fig. 1. HRTEM image of Pt nanoparticles deposited on MWCNTs by ALD.

Download English Version:

https://daneshyari.com/en/article/50152

Download Persian Version:

https://daneshyari.com/article/50152

Daneshyari.com