Accepted Manuscript

Fatigue crack growth in two TWIP steels with different stacking fault energies

H.K. Yang, V. Doquet, Z.F. Zhang

PII: S0142-1123(17)30043-9

DOI: http://dx.doi.org/10.1016/j.ijfatigue.2017.01.034

Reference: JIJF 4224

To appear in: International Journal of Fatigue

Received Date: 13 November 2016 Revised Date: 22 January 2017 Accepted Date: 23 January 2017

Please cite this article as: Yang, H.K., Doquet, V., Zhang, Z.F., Fatigue crack growth in two TWIP steels with different stacking fault energies, *International Journal of Fatigue* (2017), doi: http://dx.doi.org/10.1016/j.ijfatigue. 2017.01.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fatigue crack growth in two TWIP steels with different stacking fault energies

H.K. Yang ^{1,2}, V. Doquet ^{2*}, Z.F. Zhang ¹

- 1: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- 2: Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau, France

*corresponding author: doquet@lms.polytechnique.fr

Abstract

Fatigue crack growth tests with R=0 and 0.4 were carried out on Fe-22Mn-0.6C and Fe-22Mn-0.6C-3Al (wt. %) Twinning-Induced Plasticity (TWIP) steels with stacking fault energies around 21.5 and 37 mJ/m², respectively. The former exhibits more crack closure effects, partly due to stronger asperity-induced closure. Strain-controlled push-pull tests followed by scanning electron microscope observations show that both steels are prone to mechanical twinning under low-cycle fatigue, associated with an increasing kinematic hardening. Twinning is however more profuse in Fe-22Mn-0.6C steel. Elastic-plastic finite elements simulations of crack growth, using specific constitutive equations able to capture the increasing kinematic hardening suggest that plasticity-induced crack closure is lower in Fe-22Mn-0.6C steel. Even after closure corrections, the Al-free steel, exhibits a lower resistance to fatigue crack growth, which is attributed to a pronounced strain localisation at the crack tip, and maybe also to environment effects.

Key words: TWIP steel; Fatigue crack growth; Crack closure; Mechanical twinning; kinematic hardening.

Download English Version:

https://daneshyari.com/en/article/5015237

Download Persian Version:

https://daneshyari.com/article/5015237

<u>Daneshyari.com</u>