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a b s t r a c t

Uncertainties originate from physical variability, data uncertainty, and modeling errors in the fatigue
crack growth prediction analysis. This study presents an evidential uncertainty quantification (UQ)
approach for determining uncertainties involved in revealing the material constants of the metal fatigue
crack growth model with imprecise uncertainty information (i.e., epistemic uncertainty). The parameters
in fatigue crack growth model are obtained by fitting the available sparse experimental data, and then the
uncertainties in these parameters are considered. To alleviate the computational difficulties in the UQ
analysis based on evidence theory, an interval optimization method based on differential evolution is
used in finding the propagated belief structure. The overall procedure is demonstrated using the results
of several replicated experiments on aluminum alloy CCT specimens.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties are prevalent in practical engineering applica-
tions and can be categorized as either aleatory uncertainty (also
called objective, stochastic, and irreducible uncertainty) due to
inherent variability in a physical phenomenon or epistemic uncer-
tainty (also called subjective reducible uncertainty) due to
unknown physical phenomena [1]. In the process of fatigue crack
growth analysis, the various sources of uncertainty mainly include
variability in loading conditions, material parameters, experimen-
tal data, and model uncertainty. These uncertainties can affect the
analysis for fatigue crack propagation. Numerous experimental
studies demonstrated that significant variability in crack propaga-
tion occurs even after crack initiation [2,3]. Uncertainty appears at
different stages of analysis, and the interaction between these
sources of uncertainty cannot be modeled easily. Thus, predicting
fatigue behavior due to the various sources of uncertainty is diffi-
cult for design engineers or structural analysts.

Numerous uncertain models of crack propagation have been
developed to deal with uncertainties observed in large replicate
crack propagation tests and thus investigate the uncertainty of
crack growth prediction. The quantification for the aleatoric uncer-
tainties is relatively straightforward. Among the existing quantifi-

cation techniques, Monte Carlo (MC) method is the most
frequently used because of its moments than can represent a prob-
ability distribution. Karhunen–Loève [4] and polynomial chaos
expansions [5] also have the same function. Besterfield et al. [6]
combined probabilistic finite element analysis with reliability
analysis to predict crack growth in plates. Liu and Mahadevan [7]
proposed a concept of equivalent initial flaw size and used MC sim-
ulation to predict the probabilistic fatigue life. Jallouf et al. [8]
employed probabilistic theory to investigate the reliability of
undercut defect in a laser-welded plate made of Ti-6Al-4V titanium
alloy. Blacha and Karolczuk [9] validated the effectiveness of the
probabilistic model based on the weakest link concept in predict-
ing the fatigue life of steel-welded joints. Fatigue and crack propa-
gation in metals are recognized as stochastic processes [2,3]. Sarkar
et al. [10] applied Wiener chaos expansions in estimating fatigue
damage in randomly vibrating structures. Beck and Gomes [11]
applied polynomial chaos in representing random crack propaga-
tion data, in which crack propagation in metals is recognized as a
stochastic process. Riahi et al. [12] presented a stochastic colloca-
tion method for predicting random crack growth. Zhao et al. [13]
combined stochastic collocation approach with Bayesian method
in fatigue crack prognosis of metallic material, in which the distri-
butions of random parameters are provided with certain types of
distribution, such as normal distribution. Compared with the MC
method, this approach is significantly more efficient and time sav-
ing and presents more accurate predictions. However, when suffi-
cient data are unavailable or knowledge is lacking, the classical

http://dx.doi.org/10.1016/j.ijfatigue.2017.03.004
0142-1123/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: thstj@tongji.edu.cn (H. Tang), lidaweicc123@163.com (D. Li),

772551736@qq.com (J. Li), xue@tongji.edu.cn (S. Xue).

International Journal of Fatigue 99 (2017) 163–174

Contents lists available at ScienceDirect

International Journal of Fatigue

journal homepage: www.elsevier .com/locate / i j fa t igue

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijfatigue.2017.03.004&domain=pdf
http://dx.doi.org/10.1016/j.ijfatigue.2017.03.004
mailto:thstj@tongji.edu.cn
mailto:lidaweicc123@163.com
mailto:772551736@qq.com
mailto:xue@tongji.edu.cn
http://dx.doi.org/10.1016/j.ijfatigue.2017.03.004
http://www.sciencedirect.com/science/journal/01421123
http://www.elsevier.com/locate/ijfatigue


probability methodology may be inappropriate. Thus, strong statis-
tical information cannot handle uncertainties in a fatigue lifetime
prediction problem. In such a case, the usual probabilistic method-
ologies cannot be used and an alternative approach that can utilize
insufficient uncertainty information is required.

Given experimental bounds on the variability of the Paris equa-
tion parameters, Worden and Manson [14] investigated the effect
of the parameter uncertainty on the estimated lifetime of a cracked
metallic plate (Titanium alloy Ti-6Al-4V) using interval arithmetic.
Surace and Worden [15] conducted an extended analysis on dam-
age progression within the framework of interval arithmetic. The
major problem of the interval approach is that all ranges are
entirely independent of one another and the upper and lower
bounds are certain. This condition may result in the undesirable
overestimation of the true solution set.

In general, the sources of aleatory uncertainty are represented
using a probabilistic framework when sufficient data are available.
By contrast, epistemic uncertainty cannot be fully characterized by
probabilistic approaches because inferring any statistical informa-
tion may be difficult owing to the lack of knowledge, thereby lead-
ing to subjective probabilistic descriptions. Epistemic uncertainty
can be represented using various methods, such as interval arith-
metic [16], fuzzy sets [17], possibility theory [18,19], information
gap decision theory [20], evidence theory [21–24], and imprecise
probability [25,26]. Selecting an appropriate mathematical struc-
ture to represent epistemic uncertainties can be more challenging
than quantifying aleatory uncertainty. For example, the major dif-
ficulties in fuzzy set theory lie in that it cannot combine fuzzy sets
with probabilistic information and cannot quantify the linguistic
uncertainty. The possibility theory has no clear method for com-
bining degrees of belief and probabilistic information. Among
these methods, evidence theory has much potential in uncertainty
quantification (UQ) and is more general than probability and pos-
sibility theories. Evidence theory was first proposed by Dempster
[27] and extended by Shafer [21], which offers a framework for
naturally modeling epistemic uncertainty and aleatory uncertainty
due to its flexibility. It uses plausibility and belief to measure the
likelihood of event without the need of additional assumptions.
Evidence theory can provide equivalent formulations to convex
models, possibility theory, and fuzzy sets, and it can incorporate
different types of information in one framework to quantify uncer-
tainty in a system [22]. Recently, some engineering applications
with UQ based on evidence theory have achieved significant results
[28–33].

Evidence theory has a strong capability to deal with uncertainty
modeling and decision under uncertainty when the uncertainty
information is imprecise. However, the large computational cost
caused by its discrete property severely influences the practicabil-
ity of evidence theory. To alleviate the computational difficulties in
the UQ analysis based on evidence theory, an interval optimization
based on differential evolution (DE) for computing bounds method
is developed.

In this work, evidence theory is applied in characterizing the
uncertainty of a fatigue crack growth model in situations where
the uncertainty information is imprecise (i.e., epistemic uncer-
tainty). The available data for the crack growth model material
constants are insufficient for assigning a particular probability den-
sity function. In such a case, using only one framework (probability
theory) to quantify the uncertainty in crack growth prediction may
be limited. Thus, evidence theory that is notable for its flexibility
and can offer a viable alternative for the purpose of uncertainty
propagation is used. Fracture mechanics based on the Paris–Erdo-
gan law [34] is chosen to describe the crack propagation, and initial
crack size a0 and the Paris equation constants C andm are regarded
as uncertain variables. The fatigue crack growth data curve fitting
analysis of the large replicate experimental results of Virkler et al.

[2] and Tian et al. [35] is addressed. The present study aims to
investigate the uncertainty of crack propagation using sparse
experimental data to explore the feasibility of the approach.

2. Evidential UQ of crack growth model

2.1. Fundamentals of evidence theory

Evidence theory is introduced in this section prior to its applica-
tion to the uncertainty modeling of crack growth. Evidence theory
was originally proposed by Dempster [27] and further developed
by Shafer [21] to describe epistemic uncertainty. Among the
numerous non-probabilistic methods, evidence theory is the most
closely related to probability theory, which is a generalization of
classical probability theory. Probability masses can only be
assigned to a single event in the UQ with probability theory, and
the probability mass function is a mapping R:? [0, 1]. However,
in evidence theory, the mass function is not only assigned to a sin-
gle value but also to sets or ranges. The core of evidence theory is
the frame of discernment H, which concludes all the possible
answers to the investigated problem and all the elements in
mutual exclusion between each other. Evidence theory is a map-
ping from 2H ? [0, 1]. Mass function mapping is from 2H ? [0,
1], and A is a subset of 2H, denoted by A # 2H. This mass function
is given by

mð£Þ ¼ 0X
A#2H

mðAÞ ¼ 1

8<
: ; ð1Þ

where m(A) is also called basic belief assignment (BBA), and it rep-
resents confident degree in event A. When m(A) > 0, the subset A is
called focal element. BBA is estimated by the obtained data or given
by experience.

Evidence theory represents uncertainty using a probability
interval instead of a probability value. For event A, the lower and
upper bounds of uncertainty interval are called the belief function
Bel(A) and the plausibility function Pl(A), respectively. Bel(A) repre-
sents the confident degree to believe that event A is true, which is
the minimum possibility that A occurs, and Pl(A) represents the
confident degree to believe that event A is not false, which is the
maximum possibility that A occurs. Bel(A) and Pl(A) are given by

BelðAÞ ¼
X
B#A

mðBÞ; ð2Þ

PlðAÞ ¼ 1� BelðAÞ ¼
X

B\A–£

mðBÞ: ð3Þ

Belief and plausibility functions constitute the lower and upper
bounds of proposition A. The interval [Bel(A), Pl(A)] represents the
belief degree of proposition A. For information from multiple
sources, the combined evidence can be obtained by Dempster’s
rule [27] of combination. This rule is discussed in detail in [36].

2.2. Evidence-based UQ framework for fatigue crack growth models

Following the brief overview of evidence theory, the evidence-
based UQ framework for fatigue crack growth models is presented
in this section.

2.2.1. Crack propagation models
The proposed uncertain model of fatigue crack damage is based

on a deterministic model of fatigue crack growth [34], which is
based on the principle of linear elastic fracture mechanics. The
Paris law provides the rate of crack propagation (da/dN) as a func-
tion of the amplitude of stress intensity factor (SIF) DK:

164 H. Tang et al. / International Journal of Fatigue 99 (2017) 163–174



Download English Version:

https://daneshyari.com/en/article/5015285

Download Persian Version:

https://daneshyari.com/article/5015285

Daneshyari.com

https://daneshyari.com/en/article/5015285
https://daneshyari.com/article/5015285
https://daneshyari.com

