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TAGGEDPA B S T R A C T

Constitutive equations are developed for voided materials and ductile fracture taking into account possible
effects of Lode angle in the yielding behaviour of the matrix. The Gurson criterion (Gurson, 1977) [4] is gen-
eralized to such circumstances. A semi-closed form expression , similar to the Gurson criterion is obtained
for the effective yield criterion for the porous solid and involves four different functions , all dependent on
the macroscopic stress triaxiality and Lode angle but are not generally available in closed form. In parallel, a
parametric representation of the effective yield criterion is provided which allows for the derivation of
closed form results for pure shear stress states and also at very high stress triaxialities. In the former
case corresponding to a zero macroscopic mean stress, the contour of the yield domain in the p-plane
has exactly the shape of the yield surface of the matrix in the deviatoric plane but a size reduced by a factor
1� f ; with f the porosity of the voided material. In the latter, effective yield stresses for the voided material
are slightly different from the Gurson result and found to be set by the yield stress at a microscopic stress
Lode angle p

3 for very high positive triaxiality and by the yield stress at a microscopic stress Lode angle 0 for
very high negative triaxiality. Various numerical results are furnished to illustrate all the obtained results.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

TaggedPAn important issue in material mechanics is the development
and validation of accurate macroscopic constitutive equations for
engineering materials allowing good design and in service predic-
tions for structural components and in particular for impact load-
ings. This is a difficult task and very often the needed constitutive
equations are rather obtained in an ad hoc, sometimes empirical and
in many cases in a phenomenological way. In these ad-hoc and phe-
nomenologically developed constitutive equations, the microstruc-
ture and physical mechanisms responsible for the behaviour and
fracture of these materials are usually not taken into account. Trans-
lation of this microstructure and mechanisms information to the
macroscopic level can be done through homogenization and scale
transitions in the spirit of McClintock [1], Rice and Tracey [3]
approaches for void growth and fracture and by Gurson [4] for yield-
ing of porous materials. The three contributions are so important
that they are still currently in use today. All three contributions
were undertaken with a yielding of the matrix obeying a plastic
behaviour governed by the von Mises yield criterion. Traditionally,
the von Mises criterion is the most utilised criterion because of its
mathematically simple form.

TaggedPThere are situations where the von Mises matrix behaviour
seems insufficient for reproducing the experimental observations.
For instance, Ohashi and Tokuda [5] obtained detailed information
about the plastic behaviour of real materials by precise measure-
ment of plastic deformation of thin-walled tubular specimens of
initially-isotropic mild steel under combined loading of torsion and
axial force. They used trajectories consisting of two straight lines at
a constant rate of the effective strain. From these experimental
results, they found that the effect of the third invariant of the strain
tensor appeared even for proportional deformation consisting of tor-
sion and axial force. Further, they observed the effective stress to
drop suddenly with increasing effective strain and that coaxiality
between the stress deviator and the plastic strain increment tensor
to be seriously disturbed just after the corner of the strain trajectory.
These local disturbances are recovered along the second branch of
the trajectory. In another important experimental investigation,
Rousset [6] measured precisely subsequent yield surfaces for an
2024 aluminium alloy and observed that even in the simpler case of
proportional loadings, subsequent yield surfaces are distorded with
a corner forming in the loading direction and a flattening in the
opposite one. Also, with the use of polycrystal theory of plasticity it
was found (see e.g. Hershey [15] and Hosford [16]) that the yield sur-
faces for fcc-metals do not have the elliptical form described by the
von Mises criterion. In another context, the forming limit diagrams
are seen to be significantly dependent on the yield surface [9]. Many
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TaggedPaluminium alloys for instance exhibit significant anisotropy in
strength, plastic flow and ductility. The use of Hill’s original aniso-
tropic criterion [10] (based on the von Mises criterion) has been
shown unsuitable for f.c.c metals or for materials exhibiting low r
values (where r is the ratio of the width to the thickness strain under
uniaxial tension). Experimental evidence shows here that the biaxial
flow stress in aluminum alloys is larger than the uniaxial flow stress
[7,8] whereas Hill’s theory [10] predicts the contrary. A number of
theoretical, experimental and numerical investigations exist in the
literature with the objective of a better description of yielding of iso-
tropic and anisotropic materials. Thus, for isotropic f.c.c, materials,
Hershey [15] and Hosford [16] have proposed the same equation for
the description of the yield surface and this will be used in the sequel
of this paper. This equation has also been generalized by Logan and
Hosford [13] for anisotropic materials. Another criterion was pro-
posed by Hill [11] while other improved yield criteria have been pro-
posed by Barlat et al. [12]. Lademo [17] investigated several of these
yield criteria and clearly demonstrated the need of a more complex
yield behaviour for aluminium alloys. He also shows that the con-
tours of shear stress change their shape for increasing values of shear
stress and this calls for a coupling between the shear and normal
stress components in the equation for the yield criterion. To close
this paragraph, one can conclude that independently from all the cri-
teria sketched above, and for incompressible plasticity, all involves
in a way or another the third stress (Lode angle) invariant even in
the isotropic case. This is the subject of this paper aimed at deriving
macroscopic constitutive equations for voided materials the matrix
of which has a yielding behaviour dependent on both the second
and third stress invariants. The general yield function considered
herein encompasses most of the usual criteria. The derivation of the
effective yield criterion for the porous solid is carried out in the
framework of the Gurson approach and the analysis will be limited
here to isotropic materials.

TaggedPEffects of the Lode angle in the Gurson approach appear at two
different levels. Beside the fact that the matrix behaviour is depen-
dent on the Lode angle, it also enters in the homogenization process
as the stress state in the representative volume cell (a hollow
sphere) is heterogeneous. In a recent paper the author and co-
workers [24] assessed the effects of the third stress invariant in the
yielding of ductile porous solids arising from the later effect by con-
sidering a von Mises yielding behaviour for the matrix. This was
done by simply avoiding the approximation used by Gurson [4] and
considering the full expression of the microscopic dissipation. For
small porosities encountered on ductile fracture of metals, observed
changes and roles of the Lode angle are found rather small although
from the qualitative point of view, non-symmetry of the yield locus
and changes on its curvature are observed. However, some changes
were found in the intermediate regime of triaxialities and a careful
inspection of these changes are seen to be second order effects
(of the triaxiality) rather than direct effects of the Lode angle in
the yielding of porous materials which only arise at third order of
Gurson m parameter. The coming analysis will consider all these
aspects.

TaggedPOther situations calling for more complex behaviour (either plas-
ticity or fracture) are a number of experimental observations on fail-
ure under low or negative triaxialities (McClintock [2], Johnson and
Cook [18], Bao and Wierzbicki [14], Barsoum and Faleskog [19] and
Fourmeau et al. [23]) . Shear-dominated stress states such as plug-
ging failure in projectile penetration are other examples [20] and
many others can be found in the above references. Nahshon and
Hutchinson [27] amended for instance the Gurson model in a phe-
nomenological way by making the evolution of the porosity also
dependent on the third invariant of the stress. A number of other
experimental, theoretical and numerical studies have emerged since
on the comprehension and the modelling of ductile fracture at
low triaxialities and in particular on the introduction of the third

TaggedPinvariant of stress in constitutive equations. The Lode angle effects
have been also included in [31] and [32] and studied by Danas and
Ponte Castaneda [21,22] in an alternative approach to limit analysis
of unit cell and based on second order variational homogenization
techniques.

TaggedPThe outline of the paper is as follows. In Section 2, we set the
notations used throughout the paper. The constitutive equations of
the matrix that we have in mind are described in details in Section 3.
Section 4 describes the derivation of the parametric representation
of the effective yield surface of the voided material when the Gurson
trial velocity field is used. This parametric form is used in Section 5
for various numerical simulations and to obtain some closed form
results for hydrostatic and pure loadings. In Section 6 we give a
mathematical semi-explicit expression for the equation of the
yield domain fully including effects of the Lode angle. Throughout
the paper, the results are illustrated using two different yielding
behaviour for the matrix.

2. Notations

TaggedPThe paper is concerned with the effective behaviour of porous
ductile materials described by a representative volume element V
containing voids and the rest occupied by a matrix the constitutive
behaviour of which is considered here as incompressible, isotropic
and rigid-plastic. In all the paper, s and _e denote the microscopic
stress and strain rate in the matrix while the macroscopic stress and
strain rate are called respectivelyS and _E. The latter are defined by

S ¼ <s> V ¼ 1
V

Z
V
s dV ð1Þ

_E ¼ < _e> V ¼ 1
V

Z
V
_edV ð2Þ

where the operator < ¢ > V refers to averaging over the volume V of
the representative volume element.

TaggedPThe invariants of the microscopic stress tensor are the mean
stress sm, the von Mises equivalent stress seq and the stress Lode
angle v defined respectively by

sm ¼ 1
3
sii; seq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3
2
sijsij

r
and v ¼ 1

3
arccos

27
2

det s
s3
eq

 !
ð3Þ

where s is the microscopic stress deviator and repeated summation
is used. The same invariants will be used for the macroscopic stress
S and are given by

Sm ¼ 1
3
Skk; Seq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
SijSij

r
and Q ¼ 1

3
arccos

27
2

det S

S
3
eq

0@ 1A ð4Þ

S is the stress deviator and Q the Lode angle of the macroscopic
stress. For isotropic materials considered here, the investigation
range of both v andQ can be limited 0�Q� p

3. The ordered macro-
scopic principal stresses are denoted by S1 � S2 � S3. Beside the
Lode angle Q, other equivalent measures can be used to describe
effects of the third stress invariant of the macroscopic stress, such
as the Lode parameter given by

L ¼ 2S2 �S1 �S3

S1 �S3
¼ 3

S2 �Sm

S1 �S3
¼

ffiffiffi
3

p
tan Q� p

6

� �
ð5Þ

taking values in the range �1� L�1.
TaggedPFig. 1(a) shows the effective yield domain obtained by Gurson in

the principal stress coordinate system (S1, S2, S3). The Lode angle
Q is best represented in the octahedral plane (see Lubliner [26])
where Q is (taken here) as the angle between the projection S

0
1 of

the maximum principal direction on the octahedral plane and the
stress deviator component S

0
on this plane depicted in Fig. 1(b)

showing a section of the yield surface. It is usually convenient to
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