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TAGGEDPA B S T R A C T

Most previous development of the peridynamic theory has assumed a Lagrangian formulation, in which the
material model refers to an undeformed reference configuration. In the present work, an Eulerian form of
material modeling is developed, in which bond forces depend only on the positions of material points in the
deformed configuration. The formulation is consistent with the thermodynamic form of the peridynamic
model and is derivable from a suitable expression for the free energy of a material. It is shown that the
resulting formulation of peridynamic material models can be used to simulate strong shock waves and fluid
response in which very large deformations make the Lagrangian form unsuitable. The Eulerian capability is
demonstrated in numerical simulations of ejecta from a wavy free surface on a metal subjected to strong
shock wave loading. The Eulerian and Lagrangian contributions to bond force can be combined in a single
material model, allowing strength and fracture under tensile or shear loading to be modeled consistently
with high compressive stresses. This capability is demonstrated in numerical simulation of bird strike
against an aircraft, in which both tensile fracture and high pressure response are important.
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1. Introduction

TaggedPNearly all work on peridynamics up to now has assumed material
models that are Lagrangian, meaning that the bond forces depend
not only on the current (deformed) configuration of the body, but
also on a reference (undeformed) configuration. An exception is the
class of structureless material models that were considered in [1].
These materials have bond force densities that are independent of
any reference configuration, but, due to additional assumptions in
what is now called the bond-based peridynamic theory, the struc-
tureless materials were found to have very restrictive properties and
are generally not useful in applications.

TaggedPIn the present work, we re-examine the possibility of peridy-
namic material models that depend only on the deformed configu-
ration, but do so within the state-based theory. It is shown that
the greater generality of the state-based theory compared with
the earlier bond-based theory avoids all of the limitations of the
structureless materials. When incorporated within the thermody-
namic statement of peridynamics, material models in the state-
based theory can use any equation of state from the standard
(local) theory. Futhermore, the resulting material models, which

TaggedPwill be called Eulerian, can be combined in a straightforward way
with Lagrangian models. This provides a convenient way to model
solids in applications that involve fracture and fragmentation under
tensile or shear loading, in which a Lagrangian formulation is the
natural approach, with high pressures and large deformations, in
which an Eulerian model has advantages. The capabilities of the
Eulerian approach to peridynamic material modeling are demon-
strated with examples from shock wave physics and impact
mechanics of soft materials.

TaggedPIn Section 2 we provide a brief overview of the peridynamic
theory, including mechanics and thermodynamics. In Section 3
we introduce a peridynamic Eulerian model equipped with a
Mie�Gr€uneisen equation-of-state. Application to shockwave ejecta
in a metal subjected to a detonation wave is presented in Section 3.4,
along with comparison with experiment. Combination of Eulerian
and Lagrangian contributions to bond force density in a material
model is discussed in Section 4. This approach is demonstrated in a
problem involving comminution of a material followed by large
compression in Section 4.1. Simulation of birdstrike, along with vali-
dation of the predicted centerline pressure history, is described in
Section 5. It is shown that the contribution of the Lagrangian terms,
even though the problem appears to be dominated by large pres-
sures at the point of impact, significantly improve the prediction of
how the projectile shape evolves.
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2. Peridynamic theory summary

TaggedPHere we review key features and equations of the peridynamic
theory, including the mechanical theory and thermodynamics. A
more detailed discussion may be found in the review article [2]. The
numerical discretization method used for all the examples in the
present paper is described in the Appendix.

2.1. Mechanics

TaggedPThe classical momentum equation for solid mechanics in
Lagrangian form is

r0ðxÞ€yðx; tÞ ¼ r ¢sðx; tÞ þ bðx; tÞ ð1Þ
where r0 is the mass density in the reference configuration, x is a
material point in the reference configuration, y is the deformation
map, r ¢ is the divergence operator, s is the Piola stress tensor field,
and b is the body force density field.

TaggedPThe primary motivations for development of the peridynamic
theory arise from the inapplicability of the PDE (1) at cracks or crack
tips due to the nonexistence of the necessary spatial derivatives on
these singularities, and the inability of this equation to include long-
range forces. Since (1) cannot be applied directly on discontinuites,
special techniques such as XFEM [3] have been proposed to insert
cracks into discretized regions that are assumed to undergo smooth
deformation elsewhere. Although these special techniques have
achieved many successes, they require additional complexity,
including supplemental equations that dictate the crack growth
velocity and direction.

TaggedPIn contrast, the peridynamic theory of solid mechanics is based
on integral equations, for which discontinuous solutions present no
difficulty [1,4]. In peridynamics, cracks nucleate, grow, branch,
merge, and arrest when and where it is energetically favorable for
them to do so according to the basic field equations and material
model. This capability for autonomous crack growth avoids the need
for the special techniques of fracture mechanics. See [5] for a com-
parison of peridynamics with cohesive zone methods and XFEM.
Peridynamics has been successfully applied to model fracture in pol-
ycrystals [6], failure and fracture in composites [7], dynamic brittle
fracture in glass [8], and failure in electronic packages due to drop-
shock [9], among other applications. As a multiscale material model,
peridynamics has been demonstrated to be an upscaling of molecu-
lar dynamics [10]. It has been implemented within a massively par-
allel open-source molecular dynamics code [11], demonstrating
scalable computational performance on a computer with 65,000
processors.

TaggedPIn the peridynamic model, any material point x interacts through
the material model with its neighbors q within a prescribed distance
d of itself in the reference configuration. This maximum interaction
distance d is called the horizon, and the material within the horizon
of x in the reference configuration is called the family of x, denoted
Hx. The vector between x and any point q in its family is called a
bond, denoted q�x. Fig. 1 illustrates the horizon and family of x.
Associated with each bond is a pairwise bond force density vector
(force per unit volume squared) that q exerts on x, denoted f(q, x, t).
The peridynamic equation of motion is

r0ðxÞ€yðx; tÞ ¼
Z
Hx

fðq; x; tÞ dVq þ bðx; tÞ: ð2Þ

The pairwise bond force density function is antisymmetric:

fðx; q; tÞ ¼�fðq; x; tÞ; ð3Þ
which ensures that linear momentum is globally balanced.

TaggedPThe bond forces are determined jointly by the collective deforma-
tion ofHx and the collective deformation ofHq. To precisely describe
these collective deformations, a mathematical formalism involving

TaggedPobjects called states is used. States are operators that act on bonds.
For present purposes, states are vector valued, that is, if A is a state,
then A hq�x i is a vector. The inner product of any two states A and
B is defined by

A � B ¼
Z
Hx

A hq�x i ¢B hq�x i dVq:

States are the nonlinear analogues of second order tensors in linear
algebra, which are linear transformations that map vectors to vec-
tors. For functions of states, Fr�echet derivatives are used instead of
tensor gradients. To define the Fr�echet derivative, let C be a scalar-
valued function of a vector state A . Suppose there is a state denoted
CA such that for any incrementD A ,

CðAþDAÞ ¼ CðAÞ þCA �DAþ oð kDA k Þ ð4Þ
where

kDA k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DA �DA

q
:

Then CA is the Fr�echet derivative of C . For a more complete discus-
sion of states, see [4].

TaggedPFor purposes of material modeling, the basic kinematical quantity
is the deformation state Y , defined at any [x, t] by

Y½x; t� hq�x i ¼ yðq; tÞ�yðx; tÞ: ð5Þ

The deformation state maps bonds onto their images under the
deformation and is analogous to the deformation gradient tensor in
the classical theory.

TaggedPPairwise bond force densities are assigned through the force state
T :

fðq; x; tÞ ¼ T½x; t� hq�x i�T½q; t� hx�q i :
In this equation, there are contributions from the force states at both
endpoints of the bond q�x. Clearly this expression for f satisfies the
required antisymmetry (3). The material model T̂ prescribes the
force state as a function of the deformation state:

T½x; t� ¼ T̂ðY½x; t�Þ; T½q; t� ¼ T̂ðY½q; t�Þ: ð6Þ

Eq. (6) show the main motivation for using the state formalism:
instead of a material model that gives a tensor-valued function of a
tensor, in peridynamics we have a state-valued function of a state.
The material model may include dependencies on other variables
such as temperature or the time derivative of Y . A particularly useful
material model is the elasticmaterial:

T ¼ T̂ðYÞ ¼ WYðYÞ

Fig. 1. A typical material point x interacts with its neighbors qwithin its horizon.
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