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Peridynamics is a new nonlocal theory that provides the ability to represent displacement discontinui-
ties in a continuum body without explicitly modeling the crack surface. In this paper, an explicit dynamics
implementation of the bond-based peridynamics formulation is presented to simulate the dynamic frac-
ture process in 3D elastic solid. Based on the variational theory, the discontinuous Galerkin (DG) approach
is utilized to formulate the classic peridynamics governing equation. As a result, the spatial integration
can be carried out through finite element approach to enforce the boundary conditions, constraints, con-
tacts as well as to handle the non-uniform mesh in the engineering practices. The classic material
parameters, such as the elastic modulus and fracture energy release rate are employed for the determi-
nation of material response and failure in brittle material. Several numerical benchmarks are conducted
to invest the convergence and mesh sensitivity of simulations of dynamic crack propagation process with
different refinements. The results demonstrate that the proposed peridynamics formulation can capture
the 3D dynamic crack process in brittle material effectively and accurately including multi-crack nucle-
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ation, propagation and branching.
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1. Introduction

The numerical simulation of material failure is a longstanding
challenge in the computational mechanics society as well as in the
industry. The main difficulty arises from the incompatibility between
the physical discontinuities emerging from material failure and the
partial differential equations utilized by the classic continuum me-
chanics theory to describe the material response of a solid body.
Another numerical difficulty of the material failure simulation in
solids is the challenge of maintaining an adequate data structure
representing the evolving crack surfaces during failure process. Much
effort has been devoted to overcome these numerical challenges.
At the continuum level, the XFEM method [1] introduces the level
set method into the finite elements and implicitly determines the
position and orientation of crack tips. However, as a mesh-based
method, a sophisticated book-keeping algorithm is required to track
the crack surface which turns out to be very difficult in 3D prob-
lems. The Cohesive FEM [2] method can naturally represent the
evolving discontinuity in computational domain. However, cohe-
sive laws in the cohesive model are phenomenological which not
only ruins the consistency of the material property but also leads
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to a convergence problem even in an isotropic solid. The meshfree
methods [3] also have been developed to model the material failure.
Compared to the XFEM, the meshfree methods update the connec-
tivity with customized approximations and represent the moving
boundary conditions with less effort. However, the current tech-
niques to handle multiple cracks seem to not be robust and require
further research. On the other hand to avoid the localization issue
and thus the mesh sensitivity issue, the nonlocal theories which have
been developed since the late of 1970s [4] are used in XFEM and
meshfree methods. To evade the spatial differential operation nearby
crack surface, the continuum weakly or strictly nonlocal models [5]
have been developed. These models lead to a formulation where
the spatial derivatives in the weak form of corresponding govern-
ing equations are smeared along the material failure surfaces.
Peridynamics is one of the nonlocal methods proposed by Silling
[6,7]. It has been considered as a viable and efficient numerical method
for the material and structural failure problems. Peridynamics theory
replaces the spatial differential term in the classical mechanical theo-
ries by a nonlocal integral term that assembles the interaction forces
of a material point with its neighbors. The first peridynamics model
was presented in 1997. It was named bond-based peridynamics
and was applied to the brittle materials [6]. In the bond-based
peridynamics model, each material point interacts with its neigh-
bors in a compact zone. The interaction between two material points
is called a “bond” which is independent with each other. The pair-
wise bond forces are collinear with the line of a bond and have
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opposite directions. The bond-based peridynamics model is well-
developed and has been applied to the simulation of damage and
fracture in the brittle materials [8], the reinforced concrete materi-
als [9], the composite laminate structures [10], the brazed joints [11]
and geo-materials [12]. The three-dimensional formulas of the bond-
based peridynamics can be derived from a pair-wise elastic potential
model which shall result in a constant Poisson’s ratio v=0.25 rooted
in the so-called Cauchy relation, i.e., the elastic modulus tensor sat-
isfies the relations as D1122 = D1212. To address this restriction, the so-
called ordinary and non-ordinary state-based peridynamics models
[13,14] were proposed in which the bond forces are dependent each
other in contrast with that in the bond-based peridynamics. The state-
based peridynamics evaluates the bond force based on the multi-
body potential function which has the capability to represent both
the effect of volume and shear. Although the state-based peridynamics
model has the potential to solve the general material failure prob-
lems, it is still an ongoing research topic. There are some technical
issues [15,16] that remain to be further discussed.

The motivation of the peridynamics theory is the prediction of
material damage in a 3D solid. Thus the peridynamics computa-
tional space is firstly partitioned by a set of material particles.
Subsequently, the nonlocal integral term of peridynamics theory is
implemented by the nodal integral approach [17]. This meshfree
type of implementation can capture the crack path freely. However,
the boundary condition enforcement cannot follow the standard way
of the meshfree Galerkin formulations. Another shortcoming is that
the accuracy of computation decays dramatically in the case of non-
uniform discretization. An alternative way to perform the spatial
integration and avoid those numerical defects in peridynamics
models is constructing an approximation field of the kinematic quan-
tity by finite element (FE) shape function [18,19]. Based on this
argument, the integration operation can be carried out through Gauss
integration points. Several studies [20,21] have been conducted to
verify that the peridynamics model can be implemented in the FEM
framework with nonlocal boundary conditions. The FEM
peridynamics approach inherits the advantages of FEM method such
as the straightforward boundary condition enforcement and the ro-
bustness in non-uniform discretization. To represent the strong
discontinuities in FEM peridynamics, the continuous approxima-
tion field is replaced by a piecewise continuous field which results
in a discontinuous Galerkin formula for peridynamics [19,22,23] in
quasi-static analysis. The piece-wise continuous approximation
implies the capability to represent the crack surfaces automatical-
ly. The research reports [22,23] indicate that this model can lead
to a stable solution for the quasi-static problems.

Instead of modeling brittle fracture as a quasi-static problem, this
paper presents the explicit dynamics bond-based peridynamics for-
mulas using the FEM discontinuous Galerkin theory for the dynamic
fracture problems. A distributive micro modulus of each bond is cal-
culated from the classic elastic modulus to enforce an equivalent
elastic energy density from the peridynamics and continuum me-
chanics theory. This paper is organized as follows. In section 2, the
basic bond-based peridynamics formulations are reviewed. Section
3 constructs the 3D dynamic discontinuous Galerkin weak form of
the bond-based peridynamics model. The relations between the
nonlocal peridynamics quantities and classic mechanics quanti-
ties are derived based on the equivalent elastic energy density in
Section 4. After that, several benchmark problems are presented in
Section 5. Final remarks are given in Section 6.

2. The bond-based peridynamics model
The bond-based peridynamics model can be considered a macro-

scale molecular dynamics model. The dynamic motion of a
peridynamics point is governed by the collective of the interaction

forces of this point and its neighboring points in a compact zone.
The equation of motion of any point (X) at reference configuration
at time ¢ is:

pii=Y f(u(X',t)-u(X,t),)dVy +b(X,t) (1)

where Hy is a compact neighborhood zone of X, named as horizon.
The horizon of X is defined as Hx ={X’||X’ - X|< &}, where § is the
radius of a sphere centered at X. £ denotes a bond as &= X'-X. The
pair of interaction forces (f) between X and X’ is collinear with the
bond and has opposite orientation which is determined by the rel-
ative displacement of two points: n=u(X’,t)-u(X,t). b is the
prescribed body force density. The integration term in Eq. (1) col-
lects all the bond forces imposed to X.

There are two important hypotheses of the bond force: (1) the
bond force is a short range force, i.e., it only appears inside the
compact zone:

f(n,€)=0 when|g>3. (2)
(2) fis a pairwise interaction force satisfying:
J(n.-8)=-f(n.%). (3)

which ensures the conservation of linear momentum [14] (Fig. 1).

In the bond-based peridynamics model, the material is consid-
ered as microelastic implying that a bond force is related to a
micropotential w:

fmg=""me )

where the micropotential is a peridynamics concept which is a mea-
surement of the elastic energy stored in a bond. In contrast to that
of classic continuous mechanics, the micropotential has the unit of
N/m?>. Consequently, the bond force f(n, &) has the dimension of
N/m®. The energy density of X can be collected through all its
bonds:

W:%jw(n, &)dVy.. (5)
Hx

The governing equation of the bond-based peridynamics is con-
structed from the derivative of energy equation. Here the formations
of w(n, &) represent the material types. It can be linear, non-linear
isotropic or anisotropic materials. This paper employs the proto-
type microelastic brittle (PMB) material model [15]. The PMB model
is a linear isotropic material model in which each bond is considered

Fig. 1. The peridynamics model.
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