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a b s t r a c t 

Local and global resonances under the condition of 3:1 internal resonance of a super-critically axially moving 
beam, subjected to a harmonic exciting force, are investigated in the present work. The governing equation is 
derived from the generalized Hamilton’s principle and discreted into a multiple-degrees-of-freedom system by 
the Galerkin’s method. In the super-critical regime, the axially moving beam becomes a bistable system with two 
symmetrical non-trivial equilibrium configurations. Based on the transformation around one of them, natural 
frequencies and the condition of internal resonance are obtained. By employing the method of multiple scales, 
resonances for first-two modes and harmonics under the condition of internal resonance are discussed analytically. 
Total displacement at the middle of the beam is composed by them and confirmed by direct numerical method. 
Internal resonance is found to have a big effect on the phase angle of and the amplitude. Coupling ship between 
the first-two modes is verified to be produced by the cubic nonlinearity and the 3:1 commensurability together. 
The effect of moving speed acting on the internal resonance is discussed and an energy transmission region is 
found. Different with the internal resonance in the sub-critical regime, most of the transferred energy is absorbed 
by the quadratic nonlinearity in the super-critical regime. The critical excitation of the local response is predicted 
by the analytical method and certified by simulations. The global response for the primary resonance has two 
stable focal points. However, the global response for the secondary resonance only has one stable focal point for 
the non-trivial equilibrium configuration is counteracted. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The model of axially moving beams can be discovered in many de- 
vices in the industry and daily lives. Such as belt driving devices in 
machines, metal strip in continuously variable transmission (CVT, com- 
monly used in cars), timing belts in engines and band saws. For the im- 
portance of it, the axially moving beam has been extensively researched 
for over half a century. 

In 1965, Mote did a pioneering work to investigate the dynamics of 
the moving beam. He proposed the governing equation and discussed 
natural frequencies of axially moving continua [1,2] . With a view to the 
linear restoring force and the geometric nonlinearity, a coupled planar 
vibrational governing equation was deduced by Thurman and Mote [3] . 
On the base of it, various characters of the moving beam were discov- 
ered. For example, Wickert uncoupled the equation and obtained a non- 
linear integro-partial-differential-equation for describing the transverse 
oscillation [4] . Pellicano and coworkers investigated the weak nonlinear 
vibration and bifurcation [5,6] . Parametric excitations also can be man- 
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ifested by this equation [7–10] . Chen and Yang compared the integro- 
partial-differential model and the partial-differential model by eliminat- 
ing the high order terms in the coupled equations [11] . Sandilo and van 
Horssen researched the initial-boundary value problem for an axially 
moving tensioned beam [12] . Recently, Yang and Zhang investigated 
nonlinear dynamics of axially moving beam with coupled longitudinal–
transversal vibrations [13] . Moreover, Ding and Zu applied these theo- 
ries into a factual device [14] . Bagdatli and Bilal employed the multi- 
scales method for discovering free vibrations of axially moving beam 

under non-ideal conditions [15] . The boundary condition in this docu- 
ment is something between clamped and simply supported boundaries. 

However, many transporting systems are moving at a high speed. 
For example, in paper production, the paper tapes are transported with 
longitudinal speeds of up to 3000 m/min [16] . While the axial speed 
exceeds a critical value, the straight equilibrium position becomes un- 
stable and a supercritical bifurcation occurs. The fundamental role of 
nonlinearity for supercritical systems becomes indispensable. Analytic 
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Fig. 1. Diagram of the axially moving beam. 

expressions of non-trivial equilibrium configurations were obtained by 
Wickert [4] . The stability of the non-trivial equilibrium configurations 
were discussed by Hwang and Perkins [17,18] and they found that only 
the first one was stable. Based on the stable non-trivial equilibrium con- 
figuration, complex responses and stabilities of the flexible structures 
were investigated [19–22] . Natural frequencies of the super-critically 
axially moving beam were researched by Ding and Chen [23] . They 
compared the natural frequencies yielded by the Galerkin method and 
the differential quadrature method (DQM) and found that the 4-term 

Galerkin method yielded rather accurate results for the first-two natu- 
ral frequencies. The steady-state response of axially moving viscoelastic 
beams under the supercritical traveling speed was investigated by em- 
ploying the finite difference scheme (FDM) and the differential quadra- 
ture scheme respectively [24–27] . 

For a multiple-degrees-of-freedom system or a continuous model, in- 
ternal resonance may make the responses for natural modes more com- 
plex. Riedel and Tan applied the method of multiple scales, with the lon- 
gitudinal motion neglected, to research the forced transverse response 
of an axially moving strip with 3:1 internal resonance [28] . Bifurcations 
and coupling between natural modes were produced by the internal res- 
onance. This perturbed method was also successfully used to discuss the 
nonlinear vibrations and 3:1 internal resonance of a tensioned beam on 
multiple supports [29] . By using Kane’s equation, Hu and Feng studied 
the stability of a slender axially moving beam with internal resonance 
[30] . In 2005, Sze et al. studied the forced response of an axially mov- 
ing strip with internal resonance between the first two transverse modes 
[31] by the incremental harmonic balance method. Ghayesh researched 
the nonlinear forced dynamics and the bifurcation diagrams with an in- 
ternal resonance by using the pseudo-arclength continuation technique 
and the direct time integration [32,33] . In general, all the works demon- 
strate more complex responses for the interactions of natural modes. 

However, the above literatures all focus on the internal resonance of 
axially moving beams with subcritical speeds. The non-trivial equilib- 
rium configuration has been certified that it can change the nonlinearity 
of the moving beam for a quadratic nonlinearity is taken into the gov- 
erning equation. But on the other hand, the 3:1 internal resonance works 
for the initial cubic nonlinearity. Besides, it was rare before that solv- 
ability conditions via the method of multiple scales must be yielded from 

a third order operator. Consequently, the present study is necessary as a 
development of all the existing works. In Section 2 , a partial differential 
integral equation of the super-critically axially moving beam is estab- 
lished. Section 3 studies the local steady-state responses of the primary 
and secondary responses by the method of multiple scales. In Section 4 , 
numerical examples and influences of parameters are discussed in de- 
tail. Besides, global responses are investigated by simulating method. At 
last, some conclusions are presented in Section 5 . 

2. Mathematical models 

Fig. 1 takes a driving belt as an example of the axially moving beam. 
The axial transmission speed V is considered as a constant. The distance 
between two belt-wheel tangent points is L , and the tiny change refer- 

ring to the transverse vibration is ignored. The support at the tangent 
point is simplified as simply supported. Euler–Bernoulli method is em- 
ployed here to describe the belt as it is slender. As it is known to all, 
the drive belt is tensed when it is installed. The initial tension is rep- 
resented by P here. In addition, only the transverse movement is taken 
into consideration. Hence, the kinetic energy and the potential energy 
are 
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where A is the cross-sectional area, 𝜌 is the density. 𝜎 and 𝜀 X denote 
the disturbance stress and the strain along the beam. M is the bending 
moment in a micro-segment. Commas preceding T or X denote partial 
differentiation with respect to T or X , respectively. As the longitudinal 
oscillation is ignored, the strain along X -axis can be written as 
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By employing the generalized Hamilton’s principle, the governing 
equation of the transverse vibration will be deduced. 
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where F is an external harmonic force and written as B cos( Ωt ). As the 
transverse displacement is much smaller than the length of the belt, 
the disturbance stress is simplified as a constant value. In addition, the 
linear part of the Kelvin’s material derivative is accurate to describe the 
constitutive relationship of the belt, which means 
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In Eq. (4) , E is the Young’s modulus, Λ is the viscoelastic coefficient 
and I denotes the inertial moment. Consequently, the governing equa- 
tion Eq. (3) will generate 
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Meanwhile, boundary conditions are expressed as 

𝑊 ( 0 , 𝑇 ) = 𝑊 ( 𝐿, 𝑇 ) = 0 , 𝑊 , 𝑋𝑋 ( 0 , 𝑇 ) = 𝑊 , 𝑋𝑋 ( 𝐿, 𝑇 ) = 0 (6) 

By applying some dimensionless variables and coefficients as fol- 
lows, Eq. (5) and boundary conditions could be made dimensionless for 
brevity. 
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