
International Journal of Mechanical Sciences 131–132 (2017) 286–295 

Contents lists available at ScienceDirect 

International Journal of Mechanical Sciences 

journal homepage: www.elsevier.com/locate/ijmecsci 

On the stability of magnetically levitated rotating rings 

Andrea Arena 

∗ , Walter Lacarbonara 

Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy 

a r t i c l e i n f o 

Keywords: 

Rotating rings 

Magnetic levitation 

Dynamic stability 

Critical angular speeds 

a b s t r a c t 

The dynamic stability of rotating elastic circular rings subject to magnetic levitation and radially recentering 

magnetic forces is studied. A geometrically exact model of elastic rings deforming in space is formulated in the 

context of the special Cosserat theory of curved rods. A Lagrangian description of the motion is obtained with 

respect to the rotating frame. The equations of motion are transformed into a set of ODEs according to a Faedo–

Galerkin discretization. The effects of the magnetic and gyroscopic forces on the equilibrium states of the ring 

are investigated together with the loss of stability of the low-frequency modes. Circular elastic rings with open 

and closed thin-walled cross sections (i.e., L-shaped and boxed cross sections) are considered. The loss of stability 

occurring at critical angular speeds where the critical modes become unstable is proved to depend on the ring 

stiffness and cross-sectional symmetry/asymmetry properties. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nonlinear vibrations of thin rings have attracted a lot of attention 

in the last century. The scientific debate on whether the ring response 

is softening or hardening has been very lively for decades. Early con- 

tributions on the development of mechanical models suitable for the 

investigation of the nonlinear behavior of ring-like structures were due 

to Evensen [1–4] . He who showed theoretically and experimentally that 

the characteristic response of circular rings is softening. 

The first efforts toward the determination of the nonlinear response 

features can be found in the works of Chu [5] and Nowinski [6] , where 

it was determined that the nonlinearity of thin cylindrical shells was 

of a hardening type. Criticism of these results was brought forth by 

Evensen who attributed the reason of the hardening response to the 

incorrect choice of the weight functions adopted in the discretization 

[1–3] , claiming that the weight functions did not correctly satisfy the 

periodicity condition of the circumferential displacement. In the analyt- 

ical models employed in previous works the only source of nonlinearity 

came from the inextensibility condition enforcing the circumferential 

strain to vanish. 

More sophisticated studies were proposed in [5,7,8] in the context 

of Donnell ’s or Sander ’s nonlinear theory of shallow shells whereby the 

approximate solutions obtained via perturbation techniques proved a 

softening behavior. A continuum model based on the Timoshenko beam 

theory accounting for the curved shape through new constitutive laws 

was presented in [9] where Forgit et al. proposed analytical formulations 

to determine eigenvalues and eigenfunctions of vibrating rings of arbi- 
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trary cross-sectional shape. More recently, a finite element procedure 

was successfully adopted in [10,11] to obtain the backbone curves of 

the lowest three driven modes of elastic oval rings which confirmed the 

characteristic softening behavior predicted by Evensen [4,12] . Most of 

the cited works dealt with planar rings featuring linearly elastic consti- 

tutive laws. In these models, ad hoc mechanical assumptions are often 

adopted. Such ad hoc models can be inadequate to describe the non- 

linear 3D motions exhibited by rings designed for engineering applica- 

tions involving new composite and multifunctional materials, interac- 

tions with magnetic forces or the presence of gyroscopic forces. 

Ring-like structures range from large, macro elements, typical 

for civil, mechanical and aeronautical engineering applications, to 

micro/nano-mechanical devices, such as the most recent gyroscopes 

based on ring microresonators [13] . The materials employed in these de- 

vices often exhibit nonlinear constitutive behavior [14] which, together 

with geometric nonlinearities, can severely influence the accuracy of the 

mechanisms exploiting the micro motions as shown in [15] . In recent 

works [16,17] , an asymptotic approach was adopted to investigate non- 

linear vibrations of nonlinearly elastic circular rings. In particular, it was 

shown that there are thresholds in the nonlinear constitutive laws sepa- 

rating softening from hardening flexural behaviors. Within the broader 

context of rotating structures, linear and nonlinear vibrations of rotating 

rings have been investigated for decades. The rich dynamical behavior of 

rings associated with gyroscopic effects, including the loss of stability at 

a critical speed and the frequency split of the flexural modes, attracted a 

lot of interest for the undesirable consequences that such behaviors can 

have in high precision micro/nano-mechanical devices, such as micro- 
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gyroscopes, or in macroscale structural components such as centrifugal 

separators or gas turbines [18] . 

The earliest contribution on rotating rings was due to Bryan in 1890 

[19] followed by several authors [20–23] who took inspiration from his 

work developing linear and nonlinear theories, based on ad hoc kine- 

matic assumptions and boundary conditions, and theoretically validated 

the phenomenon of separation of the flexural modes frequencies occur- 

ring at increasing angular speeds. This characteristic behavior was fur- 

ther validated by the experimental work of Endo et al. [24] providing 

the frequency measurements of the forward and backward flexural trav- 

eling waves. Endo et al. also ascertained that the flexural modes do not 

become unstable within the whole range of experimentally investigated 

angular speeds. The unforced planar motion of nonlinearly elastic and 

viscoelastic rotating rings was studied in [25] where the important role 

played by the shear deformation was highlighted. An interesting contri- 

bution on the effects of the Coriolis forces in elastic rings rotating about 

an arbitrary axis was presented in [26] . By employing a linear model of 

elastic rings, a comprehensive study was carried out about the influence 

of the gyroscopic terms on the modal characteristics and it was shown 

that spinning rates about axes in the plane of the ring always cause cou- 

pling between in-plane and out-of-plane motions. On the other hand, 

the influence of geometric nonlinearities on modal couplings in rotating 

rings was investigated in [27] . By employing an approximate nonlinear 

model, the authors observed the so-called stiffening effect in the fre- 

quency separation occurring at increasing speeds. Such a phenomenon 

was also observed in rotating disks and beams and in early studies of 

rotating rings on elastic foundations [28] . The most recent contribution 

on this topic can be found in [29] where small-amplitude oscillations 

about the undeformed ring state were investigated. The influence of ro- 

tational inertia and pre-twisted configurations on the vibration modes 

was investigated for rings with periodic boundary conditions and for 

clamped rings. 

The present work deals with a fully nonlinear 3D model of un- 

shearable elastic rings rotating about their polar axis and subject to 

magnetic levitation forces together with radially recentering magnetic 

forces. This peculiar mechanical system has applications in diverse fields 

such as high precision machineries and energy and is also envisioned 

for applications ranging from future shaftless rotors to contactless mi- 

cro/nanoengines. This is why the study of the ring stability can pave the 

way to a great wealth of new designs. 

A nonlinear continuum model is necessary to correctly investigate 

the dynamic stability via consistent linearizations as well as nonlinear 

phenomena that can be exploited for advanced designs. The objectives 

of this work are multi-fold: (1) present a nonlinear model describing the 

3D finite motions of rings including the effects of nonsymmetry of the 

cross sections (which causes a natural coupling between in-plane and 

out-of-plane dynamics [30] ); (2) discuss interesting phenomena due to 

the simultaneous presence of nonlinearities arising from levitation and 

radial magnetic forces; (3) present numerical investigations into the loss 

of stability of some rigid-like motions observed when the angular speed 

is increased. To this end, by considering two cross-sectional shapes, the 

nonsymmetry of the ring cross sections is shown to play a major role on 

the ring dynamic stability. 

2. Mechanical formulation 

A circular elastic ring subject to levitation and recentering magnetic 

forces is assumed to rotate about its polar axis with a prescribed an- 

gular speed. The special Cosserat theory of curved rods is employed in 

the context of a Lagrangian formulation whereby the kinematic param- 

eters are introduced to describe the motions with respect to the rotating 

frame. The mechanical ring model takes into account sufficiently thin, 

slender rings for which the shear strains are negligible. The behavior 

is thus dominated by stretching/flexural/torsional deformations. More- 

over, the ring cross section is assumed to be thin-walled and to exhibit 

eccentricity between the elastic center and the center of mass as is the 

case with most of the engineering applications making use of rings. To 

study the vibrational features of this dynamical system and to predict 

the loss of stability due to the combined effects of the gyroscopic and 

the motion-dependent magnetic forces, detailed eigenvalue analyses are 

carried out on the linear equations obtained via linearization of the non- 

linear equations of motion about the rotating equilibrium states for a 

given angular speed. 

Kinematics . A fixed right-handed frame { e 1 , e 2 , e 3 } is introduced in 

Euclidean space, with { e 1 , e 2 } being the plane in which the base curve 

of the ring lies in its stress-free state (see Fig. 1 ) and e 3 collinear with the 

ring polar axis. To attain broader generality, the ring is assumed to have 

open or closed thin-walled cross sections generally lacking symmetry. 

The cross sections are assumed rigid in their own plane. 

The circular base curve, described by the arclength s with origin at 

some arbitrary point, is assumed as the locus of the elastic centers 𝐶 E of 

the ring cross sections. The orientation of the cross sections in the refer- 

ence (stress-free) configuration is described by the local principal triad 

{ 𝒃 o 1 ( 𝑠 ) , 𝒃 
o 

2 ( 𝑠 ) , 𝒃 
o 

3 ( 𝑠 )} . At time t , the current orientation of the ring cross 

section is described by the orthonormal triad { b 1 ( s, t ), b 2 ( s, t ), b 3 ( s, t )}. 

Such triad is obtained via a finite rotation of the frame { 𝒃 o 1 ( 𝑠 ) , 𝒃 
o 

2 ( 𝑠 ) , 𝒃 
o 

3 ( 𝑠 )} 
through a sequence of two flexural rotations denoted by 𝜙3 ( s, t ) and 

𝜙2 ( s, t ) and the twisting rotation denoted by 𝜙1 ( s, t ), respectively. The 

resulting orthogonal tensor denoted by R ( s, t ) is parametrized in terms 

of the described rotations in the form given in the Appendix . 

In the stress-free configuration, the ring base curve is a circle de- 

scribed by the position vector 𝒓 o ( 𝑠 ) = − 𝑟 o 𝒃 o 2 , where 𝑟 o is the radius of 

the undeformed ring. Such a curve is characterized by a constant geo- 

metric curvature 𝝁o = 𝜇o 𝒃 o 3 (where 𝜇o = 1∕ 𝑟 o ). The displacement of the 

base line from the reference to the current configuration at time t is 

described by the vector 𝒖 ( 𝑠, 𝑡 ) = 𝑢 1 ( 𝑠, 𝑡 ) 𝒃 o 1 + 𝑢 2 ( 𝑠, 𝑡 ) 𝒃 o 2 + 𝑢 3 ( 𝑠, 𝑡 ) 𝒃 o 3 . Thus 

the current position of the elastic centers 𝐶 E is given by the vector 

𝒓 ( 𝑠, 𝑡 ) = 𝒓 o ( 𝑠 ) + 𝒖 ( 𝑠, 𝑡 ) = 𝑢 1 ( 𝑠, 𝑡 ) 𝒃 o 1 + 

(
𝑢 2 ( 𝑠, 𝑡 ) − 𝑟 o 

)
𝒃 o 2 + 𝑢 3 ( 𝑠, 𝑡 ) 𝒃 o 3 . 

The vector of the generalized strain parameters is defined as 𝝂( 𝑠, 𝑡 ) = 

𝜕 𝑠 𝒓 ( 𝑠, 𝑡 ) (the notation 𝜕 s here and henceforth indicates partial differ- 

entiation with respect to the arclength s ). The components of 𝝂( s, t ) 

in the cross-section-fixed frame can be obtained as 𝜈 = 𝝂 ⋅ 𝒃 1 (stretch), 

𝜂2 = 𝝂 ⋅ 𝒃 2 (shear strain in the b 2 direction), 𝜂3 = 𝝂 ⋅ 𝒃 3 (shear strain 

in the b 3 direction), respectively. The dot between two vectors indi- 

cates the dot product. The ring deformation modes include also bend- 

ing and twisting described by the incremental curvature vector 𝝁( 𝑠, 𝑡 ) = 

𝜇1 𝒃 1 + 𝜇2 𝒃 2 + 𝜇3 𝒃 3 calculated according to 𝜕 𝑠 𝒃 𝑖 = 𝝁̆ × 𝒃 𝑖 where × rep- 

resents the cross product and 𝝁̆ denotes the total elasto-geometric curva- 

ture vector expressed as 𝝁̆( 𝑠, 𝑡 ) = 𝐑 ⋅ 𝝁o + 𝝁( 𝑠, 𝑡 ) (for more details about 

the justification of this formula, please see Chap 7, Sect. 7.2 of [31] ). 

The components 𝜇i ( 𝑖 = 1 , 2 , 3 ) of the incremental curvature vector are 

given in the Appendix . 

Equations of motion . The generalized stress resultant and moment are 

expressed as 𝒏 ( 𝑠, 𝑡 ) = 𝑁 𝒃 1 + 𝑄 2 𝒃 2 + 𝑄 3 𝒃 3 and 𝒎 ( 𝑠, 𝑡 ) = 𝑇 𝒃 1 + 𝑀 2 𝒃 2 + 

𝑀 3 𝒃 3 , respectively. The generalized stress components N, Q 2 and Q 3 

have the meaning of tension and shear forces, respectively, while T, M 2 

and M 3 represent the torque and the bending moments, respectively. 

For cross sections having the elastic center 𝐶 E not coinciding with the 

center of mass C of the ring cross sections, the time rates of change of 

linear and angular momentum per unit reference length are given by 

𝜕 𝑡 𝒍 ( 𝑠, 𝑡 ) = 𝜌𝐴 𝜕 𝑡𝑡 𝒓 + 𝜕 𝑡 ̃𝝎 × 𝜌𝑺 + 𝝎̃ ×
(
𝝎̃ × 𝜌𝑺 

)
and 𝜕 𝑡 𝒉 ( 𝑠, 𝑡 ) = 𝜌𝑱 ⋅ 𝜕 𝑡 ̃𝝎 + 𝝎̃ ×(

𝜌𝑱 ⋅ 𝝎̃ 

)
+ 𝜌𝑺 × 𝜕 𝑡𝑡 𝒓 , respectively. Here and henceforth, 𝜕 t and 𝜕 tt indi- 

cate partial differentiation with respect to time t, 𝜌A is the ring mass per 

unit reference length, 𝜌𝑺 = 𝜌𝑆 2 𝒃 2 + 𝜌𝑆 3 𝒃 3 is the vector of first mass mo- 

ments 𝜌S i of the ring cross section, and 𝜌J is the positive-definite tensor 

of second moments of mass whose nontrivial components are the mass 

moments of inertia 𝜌J 11 , 𝜌J 22 and 𝜌J 33 with respect to b 1 , b 1 and b 3 , 

respectively. Furthermore, 𝝎̃ indicates the angular velocity of the ring 

cross sections. 

By letting f ( s, t ) and c ( s, t ) denote the external force and couple per 

unit reference length, including the dissipative forces, the local state- 
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