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a b s t r a c t 

A meshless formulation for fracture analysis of stiffened plates is introduced in this paper. Based on an improved 
meshless model of stiffened plates proposed by the authors, in which flat plate and ribs are combined by im- 
plementing the displacement compatibility conditions between them, a crack is introduced by the diffraction 
method. The expanded basis function and the weight function based on t − 1 distribution are employed. Inheriting 
the meshless advantages from the model, the ribs in our formulation can be set at any location on the flat plate, 
and the remeshing of the flat plate is naturally avoided when rib location changes. Some numerical examples 
are investigated by the proposed formulation and the commercial FEM software ANSYS, and the accuracy of the 
proposed formulation is verified. The effects of ribs on the displacement, stress and SIFs of the stiffened plates 
that have cracks are discussed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Because of high strength/weight ratio, stiffened plates have been 
extensively found in civil and oceanographic engineering, transporta- 
tion and aerospace industry, etc. Analyzing stiffened plates is no doubt 
more complicated than analyzing flat plates because of the presence of 
ribs/stiffeners. 

The early researchers used an orthotropic model [1] , which approxi- 
mated stiffened plates with flat plates of equal thickness. Another option 
was a grillage model [2] . At present, researchers tend to first consider 
the ribs and flat plate of a stiffened plate separately, and then to combine 
them together by introducing the displacement coordination between 
them. 

In 1973, Tvergaard [3] investigated local and general buckling 
of wide panel stiffened by eccentric ribs under compression. Smith 
[4] studied a ship hull under local compression, and obtained the ul- 
timate longitudinal strength of the hull. Taking plate/rib interplay and 
welding residual stress into account, an analytical method to study elas- 
tic local buckling of a stiffened plate under uniaxial compression was 
presented by Fujikubo and Yao [5] . Duc et al. [6] carried out a non- 
linear dynamic analysis on piezoelectric imperfect stiffened FGM plate. 
Dang and Kapania [7] presented a Ritz approach for buckling predic- 
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tion of cracked-stiffened structures. Milazzo and Oliveri [8] analyzed 
post-buckling of cracked multilayered composite plates through pb-2 
Rayleigh–Ritz method, which was followed by their further study on 
buckling and post-buckling of stiffened composite panels with Ritz ap- 
proach [9] . 

For the past decades, numerical tools for stiffened plates developed 
rapidly, and the finite difference method [10, 11] , the energy based 
approach [12] , the finite element method [13–17] , BEM-FEM method 
[18] , the compound strip method [19] and the reproducing kernel parti- 
cle method [20] for stiffened plates were proposed. An Apb-2 Rayleigh–
Ritz approach for the dynamic analyses of stiffened plates was proposed 
by Liew et al. [ 21 ] and Xiang et al. [ 22 ]. Modeling a plate with an All- 
man’s triangular element and ribs with the Timoshenko beam theory, 
Nguyen-Minh et al. extended a cell-based smoothed method (CS-FEM- 
DSG3) for the flexure and dynamic analyses of stiffened folded plates 
[23] . Duc and coworkers [24–28] made contribution to the research of 
FGM plates and stiffened FGM shells resting on elastic foundation. Duc 
et al. [29] simulated dynamic crack propagation in functionally graded 
glass-filled epoxy. Tinh et al. [30] introduced a meshfree analysis for 
Reissner–Mindlin plates. A meshless model for the solution of static, 
free vibration and stability problems of stiffened plates and corrugated 
plates was established by the authors in [ 31–34 ]. 
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Fig. 1. The DOI of Node i modified by the diffraction method. 

In the analysis of fracture problems, traditional FEMs encounter dif- 
ficulties in handling the movable discontinuities that are not coincident 
with the initial finite element mesh. Re -meshing is inevitable during 
the entire process of problem evolution, which is very complicated and 
may lead to accuracy decline. As alternatives, the meshless methods and 
the extended finite element methods (XFEM) for cracked structures had 
been developed. The XFEM [35–37] simulates cracks that are not coinci- 
dent with the finite element mesh, and the method makes the modeling 
of growing cracks much easier, as no remeshing of the problem domain 
is needed. Belytschko and coworkers [38–42] developed an Element- 
free Galerkin (EFG) method for the static and dynamic problem of crack 
propagation in linear material. The method was able to simulate crack 
propagation in arbitrary path, and it was applicable to anisotropy and 
nonlinear material. Xu and Saigal [43, 44] studied type I quasi-static 
crack propagation of elastic-plastic hardening and non-hardening mate- 
rial with EFG. With a boundary element formulation, Wen et al. [45] an- 
alyzed the shear deformable stiffened cracked plates. 

In this paper, a meshless formulation based on the first-order shear 
deformation theory (FSDT) [46] and moving-least square (MLS) approx- 
imation [47] is proposed for the simulation of stiffened plate with an 
edge crack. An improved meshfree model for stiffened plate is intro- 
duced, and the edge cracks are involved in the model with the diffrac- 
tion method [41] . A few examples are analyzed to test the validity of 
the formulation. The results from FEM analysis given by ANSYS or other 
researchers are also listed for comparison. The effect of ribs is also dis- 
cussed based on the proposed formulation. 

2. Meshless model for stiffened plate with crack 

2.1. The moving-least approximation 

According to the MLS [47] , u ( x ) in a problem domain Ω may be 
approximated by function u h ( x ) in sub-domain Ωx , and 

𝑢 ℎ ( 𝑥 ) = 

𝑚 ∑
𝑖 =1 
𝑝 𝑖 ( 𝑥 ) 𝑏 𝑖 ( 𝑥 ) = 𝒑 𝑇 ( 𝑥 ) 𝒃 ( 𝑥 ) , (1) 

where h defines the domain of influence (DOI) of the nodes, p i ( x ) are 
basis functions, m is their number, and b i ( x ) are unknown coefficients. 
In this formulation, the quadratic basis 

𝒑 𝑻 = [1 , 𝑥, 𝑥 2 ]( 𝑚 = 3) (2) 

is used for the ribs. 
Stiffened plates with edge cracks will be studied in the paper, and 

therefore a discontinuous problem will be involved. In order to intro- 
duce the singularity of r 1/2 at the crack tip and to give better solution, 

the expanded basis function 

𝒑 𝐓 = [1 , 𝑥, 𝑦, 
√
𝑟 ] ( 𝑚 = 4 ) (3) 

is employed for the plate, where r represents the polar coordinate whose 
origin is at the crack tip. 

From Eq. (1) , the coefficients b i ( x ) are obtained from a L 2 norm 

𝐿 = 

�̄� ∑
𝑖 =1 
𝜔 𝑖 ( 𝑥 ) [ 𝑢 ℎ ( 𝑥 ) − 𝑢 𝑖 ] 2 = 

�̄� ∑
𝑖 =1 
𝜔 𝑖 ( 𝑥 ) [ 𝒑 ( 𝑥 𝑖 ) 𝑇 𝒃 ( 𝑥 ) − 𝑢 𝑖 ] 2 , (4) 

Where �̄� defines the number of nodes in sub-domain or DOI Ωx , 
𝜔 i ( x ) = 𝜔 ( x − x i ) is the weight function for Node i , and u i the nodal pa- 
rameters. 

𝜕𝐿 

𝜕 𝒃 ( 𝑥 ) = 0 results in 

𝒃 ( 𝑥 ) = 𝐇 

−1 ( 𝑥 ) 𝐑 ( 𝑥 ) 𝒖 , (5) 

where 

𝐑 ( 𝑥 ) = [ 𝜔 1 ( 𝑥 ) 𝒑 ( 𝑥 1 ) 𝜔 2 ( 𝑥 ) 𝒑 ( 𝑥 2 ) ⋯ 𝜔 �̄� ( 𝑥 ) 𝒑 ( 𝑥 �̄� ) ] , (6) 

𝐇 ( 𝑥 ) = 

�̄� ∑
𝑖 =1 
𝜔 𝑖 ( 𝑥 ) 𝒑 ( 𝑥 𝑖 ) 𝒑 𝑇 ( 𝑥 𝑖 ) . (7) 

Substituting Eq. (5) into Eq. (1) , we have 

𝑢 ℎ ( 𝑥 ) = 

�̄� ∑
𝑖 =1 
𝑁 𝑖 ( 𝑥 ) 𝑢 𝑖 , (8) 

where 

𝑁 𝑖 ( 𝑥 ) = 𝒑 𝐓 ( 𝑥 ) 𝐇 

−1 ( 𝑥 ) 𝐑 𝑖 ( 𝑥 ) (9) 

are the shape functions. 

2.2. Modification of the weight function 

In this paper, we take a cubic spline function as the aforementioned 
weight function: 

𝜔 ( 𝑑 𝑖 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
2 
3 − 4 𝑑 𝑖 2 + 4 𝑑 𝑖 3 , 𝑑 𝑖 ≤ 

1 
2 

4 
3 − 4 𝑑 𝑖 + 4 𝑑 𝑖 2 − 

4 
3 𝑑 𝑖 

3 , 1 
2 < 𝑑 𝑖 ≤ 1 

0 , 𝑑 𝑖 > 1 
(10) 

where d i is the range from Node i to the evaluation point x . However, in 
order to introduce a crack in the DOI of a node, the diffraction method 
[41] was used to modify d i so that the DOI of a node wraps around the 
crack tip ( Fig. 1 ), which is similar to light diffraction: 

𝑑 𝑖 = 

( 
𝑠 1 + 𝑠 2 ( 𝑥 ) 
𝑠 0 ( 𝑥 ) 

) 𝜆
𝑠 0 ( 𝑥 ) , 1 ≤ 𝜆 ≤ 2 (11) 

where 

𝑠 0 ( 𝒙 ) = 

‖‖𝒙 − 𝒙 𝑖 
‖‖ , 𝑠 1 ( 𝒙 ) = 

‖‖𝒙 𝐶 − 𝒙 𝑖 
‖‖ , 𝑠 2 ( 𝒙 ) = 

‖‖𝒙 − 𝒙 𝐶 
‖‖ , 

and x c is the crack tip coordinates. We substitute Eq. (11) into 
Eq. (10) and obtain the weight function. The derivatives are computed 
under chain rule: 

d 𝜔 
d 𝑥 

= 

𝜕𝜔 

𝜕 𝑑 𝑖 

𝜕 𝑑 𝑖 

𝜕𝑥 
(12) 

2.3. Displacement approximation 

The meshless model of a stiffened plate ( Fig. 2 ) consists of two ribs 
(considered as beams) and a flat plate. The beams and the flat plate are 
discretized by a number of nodes. The degree of freedom (DOF) for a 
node of the flat plate is defined as ( u p v p w p 𝜑 px 𝜑 py ), and DOF for a node of 
the x -stiffener is ( u s w s 𝜑 s ). We ignore the torsional stiffness and in-plane 
bending of the stiffener. For convenience, only x -stiffener appears in our 
derivation, and y -stiffeners can be added to the derivation likewise. 
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