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a b s t r a c t 

This study presents the Ritz formulation, which is based on boundary characteristic orthogonal polynomials 

(BCOPs), for the two-phase integro-differential form of the Eringen’s nonlocal elasticity model. This approach 

is named the nonlocal Ritz method (NL-RM). This feature greatly reduces the computational cost compared 

to the nonlocal finite-element method (NL-FEM). Another advantage of this approach is that, unlike NL-FEM, 

the nonlocal mass and stiffness matrices are independent of the mesh distribution. Here, these formulations are 

applied to study the static-bending and free-dynamic analyses of the Kirchhoff plate model. In this paper, novel 2D 

BCOPs of the plate are derived as coordinate functions. These polynomials are generated using a modified Gram- 

Schmidt process and satisfy the given geometrical boundary conditions as well as the natural boundary conditions. 

The accuracy and convergence of the presented model, demonstrated through several numerical examples, are 

discussed. A concise argument on the advantages of NL-RM compared to NL-FEM is also provided. 

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

The classical (local) continuum theories assume that the strain and 
stress at each point are related. However, these theories have been 
shown to be inadequate for numerous situations in which a character- 
istic length scale of the medium must be considered in the physical so- 
lution. The local theory cannot be used to describe the stress and strain 
fields around sharp crack tips, the dispersion of elastic waves, strain 
softening, size-dependent effects and dislocation [ [3] ]. As a result, non- 
local continuum theories are needed to model the structural responses 
of new materials to account for small-scale effects. Nonlocal theories as- 
sume that the stress at each point is affected by the strain at all points 
in the field. Kröner [30] , Kunin [32] , and Krumhansl [31] proposed for 
the first time the idea of the nonlocal theory. Among size-dependent 
theories, one of the most well-known is the nonlocal continuum theory 
of Eringen. In this theory, the scale effect and long-range interatomic 
interactions are entered as material parameters into the constitutive 
equations. Later, Edelen and Laws [13] , Edelen et al. [12] , and Eringen 
and Edelen [17] improved nonlocal formulations in a thermodynamic 
framework and accounted for long-range interactions in the constitutive 
equations in an integral form. Eringen [16] and Altan [2] presented the 
two-phase integro-differential nonlocal elasticity theory, which includes 
both local and nonlocal integral-type elasticity theories by assigning a 
volume fraction to each of the theories. In integral non-local theory, an 
integral operator is represented as a material parameter to take into ac- 
count the nonlocal nature of the material structure. In this theory, the 
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stress at a material point is dependent on a positive distance-decaying 
kernel function as a weighted integral of strains over a specified finite re- 
gion. This theory for isotropic material results in a set of integro-partial 
differential equations for the displacement domain, which are difficult 
to solve, particularly for mixed boundary-value problems [40] . 

The integral nonlocal elasticity theory was revised by Polizzotto 
[38] , who proposed nonlocal finite-element models to remove the dif- 
ficulties of employing the nonlocal boundary conditions. Polizzotto 
[38] obtained nonlocal finite element (NL-FEM) and an alternative FEM- 
based iterative formulation of the integral-type nonlocal model based on 
three variational principles. A nonlocal-type FEM (NL-FEM) was devel- 
oped in which the symmetric global-stiffness matrix includes the nonlo- 
cal characteristics of the problem. Moreover, an iterative-FE-based so- 
lution method (Iterative-FEM) was presented in which the local strain 
energy is iteratively corrected by an imposed correction strain. The NL- 
FEM may be used to solve one- and two-dimensional nonlocal elastic 
problems. Pisano and Fuschi [35] investigated an elastic bar subjected 
to tension based on Eringen’s nonlocal integral-type model by transform- 
ing the governing equation into the standard solvable Volterra integral 
equation of the second type. Later, Benvenuti and Simone [5] , proposed 
a closed-form solution of the local-nonlocal strain-stress law for a homo- 
geneous rod subjected to different load cases by reducing the integro- 
differential boundary value problem to a differential one. An NL-FEM 

was developed, in detail, to solve 2D elastic problems (in-plane motion) 
for homogeneous [36] and non-homogeneous [37] materials based on 
the two-phase integro-differential model. 
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Furthermore, the integral nonlocal elasticity was reduced to differ- 
ential nonlocal elasticity for certain special kernel functions by Eringen 
[15] . The differential nonlocal elasticity leads to a set of singular differ- 
ential equations, and these equations could be simply solved; however, 
some difficulty exists when employing natural boundary conditions 
[40] . In the literature, the nonlocal differential model has been most 
widely used for bending, buckling and vibration analysis of nanorods, 
nanoplates and nanobeams [1,11,22,33,41] . Also this nonlocal model is 
used for studying the vibration and buckling of functionally graded rect- 
angular nano-plates based on nonlocal exponential shear deformation 
[27,29] . Some authors addressed the well-known paradoxical cantilever 
nonlocal beam problem [9,10,42] , where an unreasonable stiffening ef- 
fect was found in their results. Challamel and Wang [9] also noted that 
this paradox can be solved with an integral-based model that combines 
the local and nonlocal curvatures in the constitutive relations. Most re- 
cently, Khodabakhshi and Reddy [26] proposed a general finite-element 
formulation for the two-phase integro-differential nonlocal model to 
solve the well-known paradoxical cantilever nonlocal beam. 

In all of the references outlined above, FEM-based approaches (i.e., 
classical and nonlocal-type FEM) have been used as the solution meth- 
ods. Shaat [40] stated that applying FE-based approaches to anal- 
yse nonlocal integral-type elastic problems required extremely chal- 
lenging computational efforts. Furthermore, Khodabakhshi and Reddy 
[26] noted that in the FE discretized integral model, due to the existence 
of the non-zero terms in the global stiffness matrix, the properties of the 
mesh distribution and also the need to increase the mesh size to achieve 
the desired accuracy, this approach demands a high computational cost. 

The main contribution of this paper is the presentation of an effi- 
cient computational method to overcome these obstacles. To achieve 
this goal, the Ritz formulation based on the boundary characteristic 
orthogonal polynomials (BCOPs) for the two-phase integro-differential 
nonlocal elasticity model is presented. In addition, a novel set of BCOPs 
are derived based on the approach described by Bhat [6] as trial func- 
tions in the Ritz method. These polynomials are generated using a mod- 
ified Gram-Schmidt orthonormalization process. The advantage of the 
novel BCOPs is that not only the given geometrical boundary condi- 
tions are satisfied but also the natural boundary conditions. It should 
be noted that this method considerably improves the problem related to 
the bandwidth growth of the stiffness matrix in FEM-based approaches 
[26] because the orthogonality property of the BCOPs would lead to an 
increased number of zero entries in the stiffness matrix. 

The nonlocal differential model has been used with the Rayleigh–
Ritz method to calculate the natural frequencies of uniform and non- 
uniform nonlocal plates for several possible boundary conditions [4,8] . 
Rayleigh–Ritz method has been used for local vibration analysis of mod- 
erately thick rectangular plates [24] and functionally graded rectangu- 
lar plate [28] . Faroughi and Goushegir [18] studied the in-plane natural 
frequencies and mode shapes of non-uniform rectangular nanoplates us- 
ing the Eringen’s nonlocal differential model along with the Rayleigh–
Ritz method. Regarding the Eringen’s nonlocal differential model with 
the Rayleigh–Ritz method for modeling a nanoplate, to the best knowl- 
edge of the authors, the Ritz method using novel BCOPs has not been 
used to model two-phase integro-differential nonlocal elasticity. This 
efficient computational method is implemented here to study the static 
and dynamic analyses of two-phase integro-differential nonlocal plate 
problems. To date, this has not been carried out using any numerical 
approaches. It is noteworthy that the method implemented here com- 
pletely eliminates the challenges of generating elements within the in- 
fluence zones (i.e., cohesive zones) in the NL-FEM. 

The outline of the paper is as follows. Section 2 describes two-phase 
integro-differential nonlocal theory in 2D. The kernel function is ex- 
pressed in Section 3 . Section 4 explains the Ritz method for nonlocal 
Kirchhoff plate theory. The construction of 2D novel BCOPs is explained 
in Section 5 . Numerical examples are given in Section 6 . Finally, some 
conclusions are drawn in Section 7 . 

2. Two-phase integro-differential nonlocal theory in two 

dimensions 

Eringen’s nonlocal theory [14] assumes that the stress at a refer- 
ence point x in the body is dependent not only on the strain at x but 
also on the strain field at all other points ( x ′ ) of the material. In the 
general integral-type nonlocal theory, this dependency is expressed as 
a weighted convolution integral in which the weighting function is a 
scalar kernel function H( x, x ′ , l c ). In Eringen’s integral-type nonlocal 
theory, the stress at the point x ∈ V ′ is given as 

𝝈( 𝐱 ) = ∫V ′ H 

(
𝐱 , 𝐱 ′, 𝑙 𝑐 

)
𝐃 ∶ 𝝐

(
𝐱 ′

)
dV 

′ (1) 

where 𝝐( x ′ ), D and V ′ denote the local strain at x ′ , the fourth-order tensor 
of classical linear elastic-material moduli and the nonlocal continuum 

volume, respectively. The parameter l c is the length-scale parameter. 
According to Eringen [16] and Altan [2] , both the local and nonlocal 

elastic models can be combined linearly and expressed as a more gen- 
eral two-phase nonlocal model. Eq. (1) can be modified for a two-phase 
model to give 

𝝈( 𝐱 ) = 𝜂1 𝐃 ∶ 𝝐( 𝐱 ) + 𝜂2 ∫V ′ H 

(
𝐱 , 𝐱 ′, 𝑙 𝑐 

)
𝐃 ∶ 𝝐

(
𝐱 ′

)
dV 

′ (2) 

Where, volume fractions 𝜂1 and 𝜂2 denote local and nonlocal phases 
of the body material, respectively. The local 𝜂1 and nonlocal-phase pa- 
rameters 𝜂2 are positive constants that should satisfy the following re- 
lation. 

𝜂1 + 𝜂2 = 1 (3) 

This model introduces two independent variables: the length 
scale, l c , and local-phase parameter, 𝜂1 . However, the differential and 
integral forms of the model of Eringen each considered only one length 
scale, l c . l c depends on the internal characteristic length l in by l c =e 0 l in , 
where, e 0 is a non-dimensional small length scale coefficient (lattice pa- 
rameter, granular size or molecular diameters) and is appropriate with 
the description of the each nanostructure material that has to be cali- 
brated with respect to dispersive wave properties of the Born–Kármán 
dynamics [15] , phonon dispersion curves [21] , atomistic models or re- 
liable experimental measurements. 

3. Kernel function 

The kernel function H( x, x ′ , l c ) imposes the shape of the nonlocal 
influence limited to a certain radial distance induced at x by the strain 
field at the points x ′ all over the body. 

The kernel function H( x, x ′ , l c ) has the following features [15] : 

∗ It is a positive function that has its maximum at the point x = x ′ and 
is attenuated by increasing ‖x − x ′ ‖. 

∗ It reverts to a delta function 𝛿( x, x ′ ) as l c approaches zero (i.e., when 
l c is negligible, the constitutive equations simplify to the classical 
local equations.). 

∗ It satisfies the normalization condition (where V ′ is embedded in an 
indefinite domain V ′ ∞): 

∫V ′∞ H 

(
𝐱 , 𝐱 ′, 𝑙 𝑐 

)
dV 

′ = 1 (4) 

∗ It is a bi-symmetric function: 

H 

(
𝐱 , 𝐱 ′, 𝑙 𝑐 

)
= H 

(
𝐱 ′, 𝐱, 𝑙 𝑐 

)
(5) 

∗ It approximates atomic lattice theory when l c approaches the exter- 
nal characteristic length. 

In the present study, the kernel function is chosen based on a mod- 
ified non-singular stress-gradient kernel function proposed by Ghosh 
et al. [20] . The 2D stress-gradient kernel is defined as 
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