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a b s t r a c t 

The main concern of this paper is the development of a three dimensional viscoelastic model at finite strain to de- 

scribe nonfactorizable behavior of rubber-like materials. The model is developed within the framework of rational 

thermodynamics and internal state variable approach such that the second law of thermodynamics in the form 

of Clausius–Duhem inequality is satisfied. The nonfactorizable aspect of the behavior is introduced via a strain 

dependent relaxation times. The model is applied to describe the response of the isotropic Pipkin multi-integral 

viscoelastic model and the Bromobutyl (BIIR) material, several parameters involved are then identified using 

quasi-static and dynamic experiments thanks to a least-square minimization procedure. The proposed model is 

able to reproduce quasi-static response and show a good ability to predict the dynamic response of nonfactorizable 

rubber-like materials (BIIR) and the multi-integral model of Pipkin in a wide range of strain. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

It is well known that rubber-like materials exhibit nonlinear vis- 

coelastic behavior over a wide range of strain and strain rates confronted 

in several engineering applications such as civil engineering, automotive 

and aerospace industries. This is due to their capacity to undergo high 

strain and strain rates without exceeding the elastic range of behavior. 

Further, the time dependent properties of these materials, such as shear 

relaxation modulus and creep compliance, are, in general, functions of 

the history of the strain or the stress [1] . Therefore, in a wide range 

of strain, a linear viscoelasticity theory is no longer applicable for such 

material and new constitutive equations are required to fully depict the 

behavior of rubber-like materials for quasi-static and dynamic configu- 

rations of huge interest in engineering applications. 

The study of viscoelastic behavior of solid materials has a long his- 

tory and several models have been developed from purely mathematical 

approaches to applied studies where ease of application is for huge in- 

terest. Two main approaches were followed in the development of non- 

linear viscoelastic models, which are: the multi-integral approach which 

was firstly introduced by Volterra (see [2] and references therein) and 

the internal variable approach. For a general understanding of different 

approaches in viscoelasticity the reader is directed to the review arti- 
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cle by Wineman [3] . A significant class of models have been developed 

following the internal variable approach which consists on a general- 

ization to a three dimensional model of the one dimensional Maxwell 

model which was firstly suggested by Schapery [4] and followed by the 

authors in [5–7] and [8] among others. The advantage of these mod- 

els is their simplicity to be implemented into Finite element industrial 

software and applied to engineering application such as the work by 

Ansari and Hassanzadeh-Aghdam [9] . Other contributions to this ap- 

proach used the fractional derivatives from the Maxwell model to obtain 

a fractional representation of the constitutive equations, see [10] and 

[11] among others. 

Furthermore, from a phenomenological point of view several models 

have been developed to describe the nonfactorizable behavior of rubber- 

like materials, namely the Solid-Liquid viscoelastic model in the series of 

papers by the authors in [12,13] and [14] for which a generalized mea- 

sure of deformation has replaced the strain tensor in the linear Boltz- 

mann convolution integral model and the nonlinear viscoelastic model 

by Schapery [4] in which the creep compliance and the shear relax- 

ation functions were considered stress-dependent and strain-dependent 

functions, respectively, and the model of Valanis [15] in which a total 

thermodynamic formulation led to a constitutive equation depending 

on the deformation via a deformation shift function in analogy with the 

so-called thermorheoligically simple materials. In the other hand, other 
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models based on the microstructure of the polymeric chain have been 

proposed such as the model by Knauss and Emri [16] in which, follow- 

ing polymer science, time dependent functions were dependent upon the 

volumetric strain via a strain shift function and the model by Caruthers 

et al. [17] in which the strain shift function was expressed in terms of 

the configurational energy of the molecular structure. 

In this work we shall develop a nonlinear viscoelastic model at finite 

strain within the framework of rational thermodynamics and the ap- 

proach of internal state variables, the model is derived through a mod- 

ification to approaches in [7] , [8] and [6] taking into account the de- 

pendence of the time dependent functions upon the state of the strain. 

The model ’s parameters are then identified using data generated from 

the multi-integral viscoelastic model of Pipkin [18] and experimental 

data for bromobutyl (BIIR) from [19] in simple extension and validated 

using monotonic tests of pure shear. 

This paper is organized as follow: in Section 2 , a one dimensional 

nonlinear viscoelastic model is developed using a modified Maxwell 

rheological model. In the Section 3 , this model is extended to the fully 

nonlinear formulation using a nonlinear set of evolution equation of the 

internal state variables within the rational thermodynamic framework. 

The shear relaxation modulus is set to be a function upon the invari- 

ants of the right Cauchy–Green strain tensor via a strain shift function 

analogous to the temperature shift function for the thermorheologically 

simple materials, this choice is motivated experimentally following the 

experimental characterization of BIIR from [19] . The constitutive equa- 

tion for the stress is then obtained by resolving the set of nonlinear 

evolution equations. In Section 4 , a systematic identification procedure 

of several parameters involved in the model is highlighted. The opti- 

mization problems arising from this identification procedure are solved 

by a modified least square minimization algorithm with Matlab soft- 

ware. Sections 5 and 6 are devoted to the results of this identification 

procedure using a theoretical data using the Pipkin model [18] and an 

experimental characterization of the Bromobutyl BIIR from [19] , respec- 

tively. The capacity of the model to describe the behavior of the material 

is then outlined. 

2. Experimental and rheological motivations 

In this section, we develop the rheological and experimental argu- 

ments leading to the proposed finite strain viscoelastic model. To mo- 

tivate the three dimensional model developed below, we first highlight 

some experimental results leading to this model and then we consider a 

suitable modification to the generalized Maxwell rheological model to 

build the one dimensional nonlinear viscoelastic model. 

2.1. Experimental motivation 

A significant class of rubbers shows nonfactorizable behavior at low 

and average range of strain. This phenomenon consists on the depen- 

dence of the shear relaxation modulus upon strain level. Several works 

were dedicated to deal with this class of behavior especially the series 

of papers by Sullivan [14] and O ’connell and McKenna [20] . In a re- 

cent work [19] , an experimental characterization was carried out with 

three rubber-like materials: the natural rubber (NR), the Bromobutyl 

(BIIR)and a mixture of these materials (NR-BIIR). Samples of the three 

materials were subjected to monotonic experiments of simple extension 

and pure shear with a relaxation of 10 minutes every 50% of strain in 

order to depict the equilibrium behavior of the materials. Moreover, a 

dynamic characterization was carried out in simple shear for a wide win- 

dow of frequency at several temperatures and predeformations in order 

to construct the master curve of the material. This material showed a 

dependence of the shear relaxation modulus upon strain. In Fig. 1 it is 

plotted the logarithm of the shear relaxation modulus G ( t ) versus the 

logarithm of time for two different level of strain 10% and 50% for BIIR 

material. The shear relaxation modulus shows a dependence upon the 

strain level which leads according to Tschoegl et al. [21] to a shift in the 

Log(t)1 2 3 4 5 6 7 8 9 10

Lo
g(

G
)

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9
Modulus for =10%
Modulus for =50%

Fig. 1. Dependence of the shear relaxation modulus upon strain for BIIR rubber. 

time with a strain dependent function since the shear relaxation modu- 

lus at any level could be obtained through a combination of a vertical 

and horizontal translation from the reference curve at a strain level of 

10%. Therefore, a one dimensional viscoelastic model, taking in consid- 

eration these results, is developed in the next section through a gener- 

alization of the Maxwell rheological model. 

2.2. Rheological motivation 

Before we develop the three-dimensional viscoelastic model, we shall 

investigate the following formulation for a standard linear solid. In this 

model, 𝜎 denotes the total stress, 𝜀 denotes the total strain, G i and 𝜏 i 
are the parameters of the Maxwell model. Unlike the rheological model 

used in [22] , the relaxation times 𝜏 i are, due to the experimental result 

outlined above, functions of the total strain 𝜀 . Furthermore, the stress in 

the spring of each Maxwell branch is denoted by Q i and it is governed 

by the following evolution equation. 

�̇� 𝑖 + 

1 
𝜏𝑖 ( 𝜀 ) 

𝑄 𝑖 = 

1 
𝜏𝑖 ( 𝜀 ) 

𝐺 𝑖 𝜀, 𝑄 𝑖 
|| 𝑡 =0 = 0 . (1) 

The total stress 𝜎 derive directly from the rheological model as the dif- 

ference between the elastic equilibrium stress and the non-equilibrium 

stresses Q i . 

𝜎 = 𝐺 ∞𝜀 − 

∑
𝑖 

𝑄 𝑖 . (2) 

The time parameters of the Maxwell model are set to be a strain de- 

pendent function; this idea follows from the description of thermorhe- 

ologically simple materials behavior see [21] and [23] , for which all 

parameters are temperature dependent via a single variable function 

called temperature shift-function . [5,24] and [20] among others general- 

ized this notion to describe thermorheologically complex materials be- 

havior where the shift function depend upon temperature and stress or 

strain. Other contributions modeled this phenomena by a strain-rate de- 

pendent relaxation times, see [25] and references therein. In our work, 

since the study was carried out using relaxation data, the time parame- 

ters take the following form. 

𝜏𝑖 ( 𝜀 ) = 𝑎 ( 𝜀 ) 𝜏𝑖 , (3) 

a ( 𝜀 ) is a positive strain function, following the dissipation inequality, 

called strain shift function. Therefore, the law of evolution of Eq. (1) be- 

came a linear differential equation over the reduced time 𝜉, after con- 

sidering the form of the time parameters of Eq. (3) . 

𝑑 𝑄 𝑖 

𝑑𝜉
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1 
𝜏𝑖 
𝑄 𝑖 = 

1 
𝜏𝑖 
𝐺 𝑖 𝜀 with 𝜉( 𝑡 ) = ∫

𝑡 

0 

𝑑𝑡 ′

𝑎 ( 𝜀 ) 
, (4) 
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