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A B S T R A C T

The vibrational behaviours of single-walled carbon nanotubes (SWCNTs) bridged on a silicon channel are
investigated using a three-segment Timoshenko beam model and a one-segment Timoshenko beam model with
elastic boundaries together with molecular dynamics (MD) simulation. A modified Fourier series method
(MFSM) is proposed to analyse the free vibration of the Timoshenko beam models with elastic boundary
conditions. Explicit formulas are derived for the van der Waals (vdW) interaction coefficients between the
SWCNTs and silicon substrates. The boundary elastic constants of the SWCNTs bridged on the silicon channel are
obtained by fitting the bending curve of SWCNTs subjected to a static uniformly distributed lateral load
simulated via the MD method. The MD simulations show that both the three-segment Timoshenko beam model
and the one-segment Timoshenko beam model with elastic boundaries have a relatively good ability to predict
the vibrational behaviours of SWCNTs bridged on a silicon channel.

1. Introduction

As mechanical structures are scaled down to the nanometer range,
the van der Waals (vdW) forces play an important role in the
interactions between nanostructures. Ru [1] presented an elastic shell
model to study the effect of vdW forces on the axial buckling of a
double-walled carbon nanotube (DWCNT). Yoon et al. [2] used multi-
ple-Euler beam models, considering the vdW interactions, to study the
free vibration of an embedded multi-wall carbon nanotube (MWCNT).
Han and Lu [3] constructed a double-shell model to study the torsional
buckling of a DWCNT and discussed the effect of the vdW forces
between the inner and the outer nanotubes on the critical buckling
loads. He et al. [4] derived an explicit formula for the vdW interactions
between any two layers of an MWCNT. A continuum cylindrical shell
model was presented to investigate the buckling of an MWCNT. Wang
et al. [5] used a double Euler beam model with consideration of the
intertube vdW interactions to study the resonant frequencies and the
associated vibrational modes of an individual DWCNT. Ansari et al. [6]
investigated the free vibration of DWCNTs via the nonlocal continuum
shell model and molecular dynamics (MD) simulation.

The carbon nanotubes (CNTs) are often embedded in an elastic
substrate. The interactions between CNTs and a substrate are mainly
vdW forces. The vdW forces play a key role in the mechanical
behaviours of CNTs [7–12]. Jiang et al. [7] developed a cohesive law
between CNTs and polymers based on the vdW force using interatomic

potential. The tensile cohesive strength and the cohesive energy were
given in terms of the area density of the CNT and volume density of the
polymer, as well as the parameters in the vdW force. Subsequently, the
cohesive law between the CNT and the polymer was used to study the
mechanical behaviours of the CNT-reinforced composites [8]. Lu et al.
[9] established a cohesive law for the vdW force of interfaces between
the MWCNTs and the polymer. Zhao et al. [11] developed coarse-
grained (CG) potentials of the single-walled carbon nanotubes
(SWCNTs) in the CNT bundles and the buckypaper to study their
mechanical behaviours. The non-bonded CG potentials between the CG
beads using the vdW cohesive energy between the SWCNTs in a bundle
were derived via analytical methods.

The boundary conditions of the CNTs embedded in elastic substrates
are far different from those of classic cases in nature. In fact, the
boundary conditions of CNTs are commonly elastically restrained
edges. Thus, it is essential to consider the vdW interactions between
CNTs and substrates effect on the vibrational behaviours for their
potential applications in nanoelectromechanical systems. CNTs that are
bridged on two substrates at both ends due to vdW forces can be
considered equivalent to a continuum beam model with elastically
restrained edges. It has been widely accepted that it is very difficult to
obtain an analytical solution for the beams, except for very few simple
boundary cases. Thus, efficient numerical techniques have been em-
ployed to solve the vibration problems of the beam with elastic
boundary conditions. Kiani [13] used the reproducing kernel particle
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method to study the free transverse vibrations of embedded SWCNTs
with arbitrary boundary conditions using the nonlocal Euler beam,
Timoshenko beam, and higher order beam models. Wattanasakulpong
and Mao [14] used Timoshenko beam theory to study the dynamic
response of beams made of functionally graded materials with various
classical and non-classical boundary conditions using the Chebyshev
collocation method. Rosa and Lippiello [15] adopted the differential
quadrature method to investigate the free vibrations of embedded
SWCNTs based on Euler beam theory.

Recently, an analytical modified Fourier series method (MFSM) was
proposed for the vibration analysis of elastically supported beams [16].
The flexural displacement of the beam is sought as the linear combina-
tion of a Fourier series and an auxiliary polynomial function. This
method was subsequently used to analyse the vibrations of elastically
supported beams and plates [17–21]. There have also been numerous
experimental studies on the vibration of SWCNT bridged on elastic
substrates [22–24]. To the best knowledge of the authors, however, no
continuum beam model with elastic boundaries has been used to
describe the effect of elastic substrates on the vibrations of SWCNTs.
Therefore, an analytical MFSM is proposed for the free vibrations of
SWCNTs by means of Timoshenko beam models with elastic boundary
conditions.

The primary objective of this work is to investigate the vibration of
an SWCNT bridged on a silicon channel using two types of Timoshenko
beam models via MFSM. The paper is organized as follows. Three- and
one-segment Timoshenko beam models with elastic boundary condi-
tions are proposed to model the free vibrations of SWCNTs via an
analytical MFSM in Sections 2 and 3, respectively. Then, the MD model
for the vibrations of SWCNTs is given in Section 4. Next, vibration
analyses of SWCNTs with elastic boundary conditions are presented and
discussed in Section 5. Finally, some concluding remarks are made in
Section 6.

2. Three-segment Timoshenko beam model

2.1. The governing differential equations and boundary conditions

As mechanical structures are scaled down to the nanometer range,
the dominated interactions between CNTs and elastic substrates
become vdW forces. Thus, an SWCNT bridged on the elastic substrates
at both ends, as shown in Fig. 1(a), can be considered equivalent to an
ideal three-segment Timoshenko beam model (TSB), as shown in
Fig. 1(b). The governing equations for the classic Timoshenko beam
describing the free vibration in each segment are as follows
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where wj and ϕj ( j = 1, 2, 3) are the transverse displacement and the
slope of the beam due to bending deformation, respectively. ρ is the
mass density, A is the area of the cross section of the beam, I is the
moment of inertia for the cross section, E is the Young's modulus,
G E v= /2(1 + ) is the shear modulus, ks is the shear correction factor of

the beam, v is Poisson's ratio [25], CvdW is the vdW coefficient between
per unit length of the CNT and the substrate.

The boundary conditions at the ends of the beam, as shown in
Fig. 1(b), can be expressed as
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The continuity conditions at the junctions are
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The dimensionless parameters for a TSB with elastic constraints are
defined as follows
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Using the above dimensionless parameters, the dimensionless forms
of the governing equations can be expressed as
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The dimensionless boundary conditions are written as follows
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