Author's Accepted Manuscript

On an energetic or dissipative isotropic hardening mechanism for thermo-mechanical models in cyclic loading

Yilin Zhu, Leong Hien Poh

ww.elsevier.com/locate/iimecso

PII: S0020-7403(17)30099-1

DOI: http://dx.doi.org/10.1016/j.ijmecsci.2017.01.022

MS3560 Reference:

To appear in: International Journal of Mechanical Sciences

Received date: 2 August 2016 Revised date: 21 December 2016 Accepted date: 13 January 2017

Cite this article as: Yilin Zhu and Leong Hien Poh, On an energetic or dissipative isotropic hardening mechanism for thermo-mechanical models in cyclic loading International Journal Mechanical Sciences http://dx.doi.org/10.1016/j.ijmecsci.2017.01.022

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

On an energetic or dissipative isotropic hardening mechanism for

thermo-mechanical models in cyclic loading

Yilin Zhu, Leong Hien Poh*

Department of Civil and Environmental Engineering, National University of Singapore,

E1A-07-03, 1 Engineering Drive 2, Singapore 119260, Singapore

*Corresponding author: L.H. Poh, E-mail address: leonghien@nus.edu.sg

Abstract

this paper, we compare and contrast the performance of two analogous thermo-mechanical models. The first reference model assumes an energetic isotropic hardening mechanism – the conventional approach in literature. Additionally, we consider an alternative formulation where isotropic hardening is strictly dissipative. Mechanically, both models are identical. The only difference lies in their respective heat conduction equations, where a heat source term associated with isotropic hardening manifests itself for the dissipative-based model. The predictions from the two models for different cyclic loading conditions are benchmarked against available experimental data for 316L stainless steel. While the energetic-based model is able to reasonably capture the material responses for simple load cases, its inadequacy for the more complex cases is easily observed. The superior performance of the dissipative-based model is furthermore demonstrated for a series of cyclic loading conditions. The results suggest that a dissipative isotropic hardening mechanism may be more appropriate for cyclic loadings.

Keywords: Thermo-mechanical; cyclic; free energy; constitutive; plasticity

Download English Version:

https://daneshyari.com/en/article/5016089

Download Persian Version:

https://daneshyari.com/article/5016089

<u>Daneshyari.com</u>