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A B S T R A C T

A semi-analytical approach to understand the manifestation of plate modeshapes associated with twin
frequencies has been presented. Square Mindlin’s plate, clamped on all sides, has been considered here. It
highlights the importance of efficacy of the beam-wise trial functions in an energy-based plate vibration analysis
method, in terms of (a) accuracy, (b) orthogonality, (c) sense (plus/minus) and (d) interference. The
inconsistency in the modeshapes of repeated frequencies, seen extensively in literature, has been attempted to
be removed, through superior closed-form orthogonal set of Timoshenko admissible functions into the Rayleigh-
Ritz method. The constructive/destructive interferences of the admissible functions, which are the products of
the beam-wise modeshapes, give the final nodal patterns and the prominence of the anti-nodes. Also, the pairs of
‘very close’ but distinct frequencies, which were often considered as ‘numerical errors’, have been counter-
intuitively justified through their Eigenvectors, which are either symmetric or skew-symmetric in the matrix
form. Nodal patterns for CCCC plate modeshapes are accurately investigated; i.e. chess-board and diagonal nodal
patterns.

1. Introduction

Very little literature is available in the area of free vibration of
plates which mathematically study plate modeshapes through the
Eigenvectors of the Eigenvalue problem. Numerical and experimental
attempts have been made to visualize the plate modeshapes, with
limited success, in the first few frequencies only. Experimentally,
modeshapes of the duplicate frequencies are not distinguishable,
because they cannot co-exist simultaneously at a particular resonant
excitation frequency of the vibration shaker. In real life, creating the
exact classical clamped boundary condition can be a huge challenge,
which leads to the invocation of random frequencies corresponding to
plates with other undesired classical/non-classical boundary condi-
tions. The premise of this work is as follows :

• What causes inaccuracies in plate modeshapes generated by numer-
ical techniques?

• Why are plate modeshape often unpredictable in published litera-
ture?

• Why do the duplicate frequencies have dissimilar modeshapes by
some numerical methods, while ‘very close’ pair of frequencies have
unpredictable modeshapes in some other numerical methods?

• Why do duplicate frequencies produce different plate modeshapes

by numerical methods? This appears as a mathematical discrepancy.
Repeated roots of an Eigenvalue problem have different
Eigenvectors, but are they supposed to manifest different or
duplicate modeshapes?

• How important is the efficacy of the beam-wise trial functions in an
energy-based plate vibration analysis method, in terms of (a)
accuracy, (b) orthogonality, (c) sense (± ), (d) interference?

• Only the frequency magnitude is no indication of the energy spread
across the area of the plate. Frequency is the Eigenvalue, i.e. just a
number, which does not indicate the spatial configuration of the
vibration, which is important in dynamic stress analysis in various
engineering applications.

2. Literature review and Work overview

Ma and Huang [15] studied the modeshapes of a plate clamped on
all sides (CCCC plate), and reported the first 12 frequencies, compared
with FEA-based results. The experimental modeshape of the duplicate
frequencies (Mode# 6) does not match the numerical ones. Mode# 11
shows a chess-board configuration, while the experiment shows a shaky
diagonal nodal line. This questions the efficacy of either method, and
necessitates the establishment of a robust approach to generate the
accurate plate modeshapes.
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Chen et al. [3] studied thin plates both experimentally and
numerically, and reported the first 15 frequencies and their mode-
shapes. For the 6 (six) pairs of repeated frequencies (one index is even
and the other is odd), the nodal lines are sometimes chess-board,
sometimes diagonal, sometimes shaky-diagonal. Also, there are dis-
crepancies between the experimental and numerical modeshapes. The
pairs of ‘very close’ frequencies have not been reported in totality: one
of the two in each pair is missing consistently. These frequencies are
very close to each other but the modeshapes are very different. The
resonant excitation of the plate by the exciter often misses out on one of
the two frequencies. This necessitates the mathematical investigation of
modeshapes and frequencies, in order to acknowledge all of the
resonant frequencies in the range of experimental excitation. Ferreira
et al. [7] showed the first 2×2=4 modes of CCCC plates, insufficient
for the first pair of ‘very close’ frequencies to appear. Also, the duplicate
frequencies do not show exactly mirror-image modeshapes, in spite of
having the same Eigenvalue (frequency). Ferreira et al. [8] shows the
first 8(eight) vibration modeshapes of a square CCCC isotropic plate,
obtained through the numerical analysis of first-order and higher-order
shear deformation theories. The first pair of duplicate frequencies has
mirror-image modeshapes, but their Eigen frequencies are not exactly
equal. The next pair, supposed to be equal, has different-looking
modeshapes, and the Eigenvalues are also not exactly equal. Bardell
[2] used the Kirchhoff’s plate theory, giving the first 2×2=4 modes of
CCCC plates, with the duplicate frequencies showing chess-board
modeshapes. Shojaee et al. [21] used NURBS for Kirchhoff thin plates,
and showed the first 20 (twenty) modeshapes of a square CCCC plate.
Here again, the duplicate repeated frequencies suffer from shaky nodal
lines (especially 9th mode), and uncertain hazy “chess-board like”
nodal patterns. Zhang et al. [24] showed the first 8 modeshapes of a
CCCC graphene sheet using the classical plate theory, involving cubic
splines as shape functions. The repeated frequencies again showed a
chessboard-like configuration, while an ANSYS analysis of the square
CCCC plate clearly gives exactly diagonal nodal lines with mirror-

images for the pair of repeated frequencies. Also, their work was unable
to generate any of the pair of ‘very close’ frequencies.

Saha et al. [18] presented the modeshapes of a Mindlin’s plates with
all edges clamped (CCCC plate), among a few other boundary condi-
tions. However, this was limited to only the first 2×2=4 modeshapes.
Discrepancies were consistently visible for the plate modeshapes with
the duplicate frequencies. Liew et al. [14] showed the first 12
modeshapes of a square CCCC Mindlin’s plate. The duplicate frequen-
cies show a chess-board configuration, which is contrary to those shown
by FEA Ferreira [7] and experiments (Ma and Huang [15]). Aridogan
et al. [1] analytically modelled a thin CCCC plate, and presented only
the first 2×2=4 modes. Hou et al. [9] used the DSC-Ritz method to
study the plate with thickness ratio 0.1, and showed the first six
frequencies and modeshapes, with some inaccuracies in the nodal lines,
especially at the edges and/or corners.

The doubts, discrepancies, and deductions from the above literature
review (Table 1) are as follows :

1) Most published works show plate frequencies as a list in the
ascending order of magnitude, without distinguishing them on the
basis of their Eigenvectors/modeshapes.

2) The duplicate frequencies cannot be distinguished experimentally.
At a single exciter frequency, one modeshape will be manifested and
the other, suppressed. The duplicate frequencies are numerically/
semi-analytically recognized, but some pairs of frequencies which
are very close to each other, are often mistaken to be duplicates, too.
Some researchers assume ‘numerical errors’ in not being able to
achieve certain “duplicate” set of frequencies.

3) The nodal lines of the duplicate frequencies should be chess-board
or diagonal or shaky-diagonal? There are conflicting conclusions
from experimental, numerical, and semi-analytical methods
(Table 1). Intuitively, the identical Eigenvalues should generate
mirror-image modeshapes. Chess-board configuration indicates that
the Eigenvector has only one dominant element, i.e. only one

Nomenclature

b ha, , Length, breadth and thickness of the plate (m,m,m)
A Cross-sectional area of Timoshenko beam (m2)
AS Aspect ratio of plate b/a (dimensionless)
c , d , eij ij ij Weights of the assumed Rayleigh-Ritz assumption
C , Cj j Arbitrary constants of Timoshenko beam and pure bend-

ing slope modeshapes
D Plate rigidity (Nm)

GE, Young modulus, Shear modulus (N/m2)
I Area moment of inertia of cross section (m4)
k2 Shear correction factor for shear strain (dimensionless)

MK, Stiffness matrix and mass matrix
L Length of the beam (m)

y tx, , Independent variable in length, breadth and time (m, m, s)
TU, Strain energy and kinetic energy (Joule)

y tw(x, ; ) Lateral displacement of the plate (m)
W(x, y) Plate modeshape (m)
W , Wxi yj Beam modeshape in x and y-direction (m)
ρ, ν Density of the material, Poisson ratio (kg/m3)
ξ, η Non-dimensional length, breadth of the beam/plate (di-

mensionless)
ω, Ω Non-dimensional and dimensional natural frequencies

(dimensionless, rad/s)
Ψ (ξ, η), Ψ (ξ, η)x y Pure bending slope of plate in x-direction, y-

direction (dimensionless)
Ψ , Ψ ; Ψ , Ψxi xj yi yj Pure bending slope modeshape of beam in x-direc-

tion, y-direction (dimensionless)

Table 1
Comparison of modeshapes in literature, for various types of frequencies.

Trial function Unique freq. Duplicate frequencies ‘Very close’ freq.

Bardell [2] Legendre polynomials ✓ Chess-board Not studied
Saha et al. [18] Dynamic Timoshenko ✓ chessboard, diagonal Not studied
Ma, Huang [15] – ✓ Shaky ✓
Liew et al. [14] Cubic Spline ✓ Chess-board ✓
Chen et al. [3] – ✓ Shaky ✓
Ferreira [7] Cubic polynomial ✓ shaky, diagonal Not studied
Ferreira et al. [8] Legendre polynomials ✓ Shaky ✓
Shojaee et al. [21] NURBS ✓ Chess-board ✓
Aridogan et al. [1] Euler-Bernoulli ✓ Chess-board Not studied
Zhang et al. [24] Cubic Spline ✓ Chess-board Not manifested
Our Work Dynamic Timoshenko ✓ Diagonal (h/a=0.01), chess-board (h/a=0.1,0.2) ✓

N. Datta, Y. Verma International Journal of Mechanical Sciences 123 (2017) 64–73

65



Download English Version:

https://daneshyari.com/en/article/5016109

Download Persian Version:

https://daneshyari.com/article/5016109

Daneshyari.com

https://daneshyari.com/en/article/5016109
https://daneshyari.com/article/5016109
https://daneshyari.com

