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The procedures for obtaining the stress vs. strain curve from the circular bulge test are investigated in detail
resorting to finite element analysis. Particular attention is given to in-plane anisotropic materials for which
remains a lack of knowledge about the distributions near the pole of the bulge specimen of variables such as the
surface radius of curvature, sheet thickness, principal stresses and strains as well as stress and strain paths. This
study seeks to understand and evaluate the errors inherent to the commonly used experimental procedure for

assessing the hardening curve from the bulge test. The procedure assumes that the stress path at the pole is
equibiaxial. An empirical equation relating the stress path with the strain path at the pole of the cap is suggested
to improve the determination of the biaxial stress vs. strain curve, which holds particular prominence in cases of

strongly anisotropic sheets.

1. Introduction

Sheet metal forming processes are demanded to manufacture
components for the automotive, aeronautics and other industries. The
finite element method (FEM) is commonly used nowadays for simulat-
ing and optimizing sheet metal forming processes. However, the
numerical simulation results are dependent on the convenient char-
acterization and modelling of the mechanical behaviour of metal sheets.
Whatever the constitutive model used in the simulations (i.e. hardening
law and anisotropic yield criterion), the strategies for identifying its
parameters as well as the experimental tests and procedures used in the
analysis play an important role in the characterization of the metal
sheets mechanical behaviour [1-8]. The parameters of the models are
generally determined with recourse to tensile and other experimental
tests, such as shear, cruciform and bulge [9].

The circular bulge test under hydraulic pressure allows achieving
relatively high strain values before necking and enables the definition
of the hardening law for a wide range of plastic deformation [10]. The
periphery of the metal sheet is immobilized through a drawbead, which
prevents the peripheral region of the sheet from moving into the radial
direction [11-13]. Then, a hydraulic pressure is applied on the inner
surface of the sheet, promoting an approximately spherical shape in the
region near the pole of the cap and inside a circle of constant latitude
[14,15]. Under these conditions, a biaxial stress path occurs at the pole
of the cap.

For evaluating the stress vs. strain curve, the evolutions of pressure,
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radius of curvature and strain at the pole of the cap should be recorded
during the test. The measurements of radius of curvature and strain can
be performed by a spherometer and an extensometer, respectively
[16,17]. An optical system can replace these mechanical systems with
advantages, since it enables the description of the geometry and strain
distributions on the sheet surface during the bulge test [18,19]. In both
cases, the membrane theory that relates the stresses at the pole with the
pressure, radius of curvature and sheet thickness must be used [20].
The analysis of the bulge test results, including the application of
the membrane theory, still presents uncertainties, despite of the recent
recommended procedure by ISO 16808 (2014) [21]. In fact, the
accurate evaluation of the stress vs. strain curves depends on assump-
tions and simplifications, whose assessment are still under study. For
example, in a recent study Mulder et al. [22] examined the validity and
the conditions for using the membrane theory, which includes issues
related to the geometry of the cap that affects the evaluation of the radii
of curvature near the pole and the equibiaxial stress state assumption in
case of in-plane anisotropic materials. They showed that the spherical
function can be successfully replaced by the ellipsoid function, for
describing the bulge surface up to large distances from the pole of the
cap, in order to estimate the curvature radius. This allows increasing
the data to be considered without loss of accuracy, since it enables the
reduction of the scatter. In case of an in-plane anisotropic material,
Mulder et al. [22] concluded that the test conditions force the material
towards an equibiaxial strain state and the deviations of the average
stress from the equibiaxial stress are less than 3%, for an in-plane
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anisotropic material described by the Hill'48 criterion, with values of
the anisotropy coefficient, r, for angles of 0, 45 and 90°, such that
ro=0.5 and r4s=r90=1.0 [23]. Yoshida [24] estimated the stress and
strain paths during the bulge test, in case of in-plane anisotropic
materials, using finite element analysis. He concludes that the stress
path at the pole of the cap deviates from equibiaxial between 1-5%,
depending on the degree of anisotropy of the materials. Also, he
observed that the deviation from unity of the ratio between the
curvature radii of the cap along the rolling and the transverse directions
is less than 0.4%, for equivalent plastic strains up to 0.6, and less than
2%, for equivalent plastic strains up to 1.0. However, these results only
concern materials with relatively low anisotropy in the sheet plane.

The current work presents a numerical study on the circular bulge
test of metal sheets, performed with the DD3IMP in-house finite element
code [25-27]. It examines the geometry and the stress and strain
distributions near the pole of the cap. This analysis also concerns the
relationship between stress and strain paths. Materials with anisotropy
in the sheet plane are particularly considered. The methodology for the
experimental determination of the stress vs. strain curve of metal sheets
and associated errors is also analysed. The Hill'48 criterion [28] and the
Swift law [29] are used due to their simplicity, but other constitutive
models are also tested.

2. Numerical modelling and analysis

In this section, the numerical model of the circular bulge test is
defined and the methodology for the evaluation of the biaxial stress vs.
strain curve is described.

2.1. Modelling

The geometry of the tools considered in the test is schematically
shown in Fig. 1, where Ry;=75 mm is the die radius, R; =13 mm is the
die profile radius, Rp=95 mm is the radius of the central part of the
drawbead and Rg=100 mm is the initial blank radius of the circular
sheet. This geometry was built based on the experimental bulge test
used by Santos et al. [30]. The tools were described using Bézier
surfaces, considering only one quarter of the geometry due to the
material and geometrical symmetry conditions. However, in order to
simplify the analysis, the drawbead geometry was neglected and its
effect was replaced by a boundary condition imposing radial displace-
ment restrictions on the nodes placed at a distance equal to Rp from the
centre of the circular sheet [13]. The contact with friction was
described by the Coulomb law with a friction coefficient of 0.02 [31].
The numerical simulations were carried out with the DD3IMP in-house
code [25-27] assuming an incremental increase of the pressure applied
to the sheet inner surface. The blank sheet, 1 mm thick, was discretized
with linear 8-node solid elements, using two layers of elements through
the thickness. More details about the spatial discretization adopted are
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Fig. 1. Bulge test, with the identification of the principal dimensions of the tool according
to Santos et al. [30].
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given in [32,33].

The constitutive model adopted for the finite element analysis
assumes that: (i) the elastic behaviour is isotropic and described by
the generalised Hooke's law (with the value of the Young's modulus,
E=210 GPa, and the Poisson's ratio, ©v=0.30, in all cases); (ii) the
plastic behaviour is described by the orthotropic Hill'48, Drucker + L or
CB2001 yield criteria and the hardening model by the Swift or the Voce
isotropic laws.

The Hill'48 yield surface is described by the equation [28]:
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where 0y, Oyy, 0y, Txy, 7xz and 7y, are the components of the Cauchy
stress tensor, defined in the principal axes of orthotropy, and F, G, H, L,
M and N are the material parameters describing the anisotropy of the
metal sheet. Y represents the yield stress and its evolution during
deformation Y = f (gP).

The Hill'48 yield criterion was chosen because of its simplicity, but
its lack of flexibility does not allow it to correctly describe some
anisotropic behaviours, including those designated by Banabic as ‘first
and second order anomalous’ behaviours [34]. In this context, the
Drucker+L and the CB2001 criteria were also chosen due to their
degree of flexibility.

The Drucker +L and the CB2001 yield criteria [35] are extensions of
the Drucker isotropic yield criterion [36]. The Drucker+L yield
criterion is described by the equation:
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where tr(s) is the trace of the stress tensor s, resulting from the linear
transformation of the Cauchy stress tensor, o, and ¢ is a weighting
isotropy parameter, ranging between —27/8 and 9/4, to ensure the
convexity of the yield surface. When c¢ equals zero, this criterion
coincides with the Hill’48 yield criterion. The s stress tensor is given by:
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where L is the linear transformation operator proposed by Barlat et al.
[37]:
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in which C; with i=1, ..., 6, are the anisotropy parameters;
C1=C3=C3=C4=Cs5=Cg for the full isotropy condition. This yield
criterion includes one more parameter, the parameter ¢, when com-
pared to Hill’48 yield criterion, thus being more flexible. So, when the
parameter ¢ is not zero, Hill'48 criterion cannot fully describe the
behaviour of a material that follows the Drucker +L criterion.

The CB2001 yield criterion is given by the equation:
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where J3 and J°; are the second and third generalised invariants of the
Cauchy stress tensor:
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