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A B S T R A C T

We attempt a reformulation of the phase field theory in the framework of peridynamics (PD) to arrive at a
continuum damage model. This obtains a better criterion for bond breaking in PD, marking a departure from the
inherently ad-hoc bond-stretch-based or bond-energy-based conditions and thus allowing for the body to
physically break into parts which a phase field model cannot by itself accomplish. Moreover, posed within the
PD setup, the integral equation for the phase field eases the smoothness restrictions on the field variable. Taking
advantages from both the worlds, the proposed scheme thus offers a better computational approach to problems
involving cracks or discontinuities. Starting with Hamilton's principle, an equation of the Ginzburg-Landau type
with dissipative correction is arrived at as a model for the phase field evolution. A constitutive correspondence
route is followed to incorporate classical constitutive relations within our PD model. Numerical simulations of
dynamic crack propagation (including branching) and the Kalthoff-Winkler experiment are also provided. To
demonstrate how the model naturally prevents interpenetration, a mode II delamination simulation is presented.
A brief discussion on the convergence of PD equations to the classical theory is provided in Appendix I.

1. Introduction

Computational models for fracture prediction and propagation are
of current interest in the continuum mechanics of solids. Since material
fracture could set off catastrophic effects, importance is naturally
accorded to predicting fracture with high precision under various
loading conditions. Cracks typically imply material discontinuities
and, therefore, problems of crack initiation or propagation do not
directly fall under the ambit of continuum formulations without
warranting a special treatment. Many theories are however in place
to address this problem. One such class of techniques considers cracks
as sharp discontinuities in the displacement field or geometry; e.g.
extended finite element method (X-FEM) and virtual crack closure
technique (VCCT). Cohesive zone modelling (CZM) is another approach
that is widely used to numerically simulate damage in the form of
cracks or delamination. In all these cases, the crack path has to be
defined a priori. Simulations of more complex problems such as
dynamic crack branching are thus not easy with these methods.

The phase field method, which has of late attracted interest, has the
ability to predict spontaneous emergence and propagation of cracks
with the added attraction of mathematical simplicity. Here cracks are
represented using a supplementary continuous scalar field variable
called the phase field (order) parameter, s ∈ [0, 1] used to distinguish
between the damaged and undamaged parts of the material. A sharp
crack may be smeared out by a continuous transition of the phase field,

considered as a bulk parameter. The evolution equation of the phase
field is coupled with the governing momentum balance equations in
continuum mechanics. The resulting system of coupled partial differ-
ential equations (PDEs) models the problem and is solved to get the
displacement, stress and phase field parameter.

Phase field models can be classified according to the viewpoint.
There are physically based models which are founded on the Ginzburg-
Landau type phase transition theory and the ones based on Griffith's
theory [31]. A large body of work is available, including the early
attempt by Francfort and Marigo [16], who proposed a variational
model for quasi-static crack evolution. Though conceptually close to
Griffith's theory of brittle fracture, this model did overcome a major
limitation of Griffith's theory: need for a pre-existing crack and a well-
defined crack path. Crack regularization in this model was inspired by
the work of Ambrosio and Tortorelli [3]. Other related works in the
area of brittle fracture based on a phase field are due to Bourdin et al.
[6], Hakim and Karma [18], Borden et al. [5], Hofacker and Miehe
[19], Kuhn and Müller [23], Verhoosel and Borst [42], Schlüter et al.
[30] and Schneider et al. [31]. Bourdin et al. [6] suggest a discrete time
model for dynamic fracture based on crack regularization. They
establish that phase field models are better than the free discontinuity
sets for modelling fracture. Hakim and Karma [18] provide methods to
derive the laws of crack motion by a generalization of Eshelby's tensor
in the context of phase field models. Miehe et al. [25,26] provide phase
field models which are thermodynamically consistent. They derive
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incremental variational principles and use multi-field finite element
method for its numerical implementation. In another paper, Miehe et al.
[25,26] develop a robust algorithm based on operator splitting for
numerical time integration. Kuhn and Müller [23] interpret phase field
as an order parameter and propose a Ginzburg-Landau type evolution
equation for the phase field. To analyse the dynamic effect on crack
growth, Schlüter et al. [30] extend Kuhn and Müller's [23] work to the
dynamic case. Starting with Hamilton's principle, they derive a set of
coupled Euler-Lagrange equations for displacement and the phase field
and numerically solve them using the finite element method. Borden
et al. [5] also use Hamilton's principle and extend the quasi-static phase
field model to the dynamic case. They present a monolithic and
staggered numerical time integration scheme. For spatial integration,
they develop a local adaptive refinement strategy based on locally
refined T-splines. Hofacker and Miehe [19] propose a computational
framework for diffusive fracture in dynamic problems with a view to
capturing complex evolving crack topologies and extend the operator
split scheme proposed by Miehe et al. [25,26] from quasi-static to
dynamic case. All these different variants of the phase field approach
involve working with derivatives and thus require adequate smoothness
of the field variables.

On the other hand, the peridynamics (PD) - a nonlocal continuum
theory proposed by Silling [35] - by design involves no spatial
derivatives of field variables and is thus a powerful tool to study
emergence and propagation of cracks. The governing equations are of
the integro-differential type (and not PDEs), an aspect that allows for an
easy tracking of discontinuities. The PD considers finite-distance
interaction among material particles and is therefore a nonlocal theory.
The finite neighbourhood in which the interaction remains restricted is
referred to as the horizon. There are a couple of variants of the PD
theory, viz. bond based and state based. State based PD can be of
ordinary or non-ordinary type. In bond based PD, force in a bond
connecting two interacting particles depends only on the deformation
of that bond and acts along the bond. For linear isotropic elastic solids,
this results in restrictive Poisson's ratios of 1/4 and 1/3 respectively for
plane strain and plane stress cases. Ordinary state based PD offers a
generalization by allowing the force in a bond to depend on the
collective deformation of all the bonds in the horizon. Here again, the
direction of the force vector in a bond is the same as the bond direction.
Non-ordinary state based PD is a generalization of ordinary state based
PD wherein the direction of the force vector is not restricted along the
bond direction. Unavailability of PD based constitutive equations is
however a more serious issue that may limit the usefulness of the PD
almost to that of a mesh-free discretization scheme [33]. In the absence
of such constitutive models, a method of constitutive correspondence
for incorporating classically known constitutive equations within the
PD has been suggested by Silling et al. [37].

The aim of this work is to reframe the phase field theory within a
PD-based setup, considered ideal in the numerical simulation of
material fragmentation. Incorporating the phase field to describe
damage evolution (using integro-differential equations characteristic
of a PD model) provides for a rational basis for ‘bond breaking’ (or bond
snapping) and does away with the ad hocism in a criterion based on
bond stretch or bond energy [11,36,7]. Indeed, a phase field typically
represents a bulk measure of damage with a crack or discontinuity
regularized through a smooth field and, on its own, it cannot display
physical discontinuities. Moreover, gradient/divergence terms in the
usual evolution laws of a phase field model could be a source of
inconsistency with the onset of material discontinuity. We may there-
fore anticipate that the notion of phase field embedded within the PD
should ameliorate these limitations inherent in the stand-alone versions
of the PD and the phase field theory. Starting with a Hamilton's
principle, we write the Lagrange density in the PD framework and thus
derive the governing equations of the PD phase field by incorporating a
dissipative relaxation term. In the absence of PD constitutive equations,
we adopt constitutive correspondence to exploit classical constitutive

equations in the PD. We assess the performance of our proposal by the
numerical simulation of a dynamic crack propagation/branching
problem and of the Kalthoff-Winkler experiment. The simulation results
correlate well with experimental observations reported in the literature.
For further illustration on the capability of our approach, we consider a
mode II delamination problem where a major challenge is to prevent
matter interpenetration. Presently, this problem is handled in PD by ad-
hoc short range forces (see [36]) and also through nonlocal Seth-Hill
measures of strain, which being nonlinear makes the computation
complicated whilst being unsuited to the incorporation of different
types of classical constitutive equations in non-ordinary state based PD.
Our approach in contrast provides for a computationally simpler
alternative to prevent interpenetration by its very construction.

The rest of the article is arranged as follows. In Section 2, recaps of
the phase field and non-ordinary state based PD theories are presented.
Section 3 reformulates the phase field equation in the framework of PD.
A criterion is suggested for bond breaking in Section 4. The issue of the
prevention of matter interpenetration is taken up in Section 5.
Numerical simulations are given in Section 6 for a dynamic crack
branching problem and for the well-known Kalthoff-Winkler experi-
ment. For demonstrating prevention of matter interpenetration, simula-
tion of a mode II delamination problem is presented next. The work is
concluded in Section 7. A brief discussion on the convergence of PD
equations to classical theory is included in Appendix A.

2. Phase field theory and non-ordinary state based PD

A brief review of the phase field theory including equations of
motion, boundary conditions and constitutive relations are furnished
below (see [19,30]). Non-ordinary state based PD following Silling
et al. [37] is also briefly recapitulated.

2.1. Phase field theory

The phase field model introduces a regularized, diffusive represen-
tation of a sharp crack topology [25,26]. Consider a reference config-
uration Ω ⊂ n, surface Ω∂ ⊂ n−1 and time interval T ⊂ , with n
either 2 or 3 depending on the spatial dimension of the body (see
Fig. 1). To characterize the state of the body, we introduce the
displacement vector field tu x( ( , )) and a phase field or an order
parameter scalar field s tx( ( , ) ∈ [0, 1]). The value of s is 1 in the
undamaged material and 0 in the fully damaged material.

Crack surface is approximated by a crack functional (Kuhn and
Muller [23])
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Here l is a length scale parameter associated with the gradient of the
phase field. (see Fig. 1). Assuming the critical energy release rate G( )c to
be independent of the crack velocity, fracture energy may be approxi-
mated as:
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Assuming displacement gradients to be small, the small strain tensor is
written as:

ε u u= ∇ + (∇ )
2

.
T

(3)

The Lagrange density per unit volume is given by:

� ψ ψ ψ= − −k e s (4)

where the kinetic energy density ψ( )k , strain energy density ψ( )e and
fracture energy ψ( )s are defined as follows.
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