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a b s t r a c t 

This article focuses on evaluating the large deflection of the thin strip under practical condition of residual stress 

after cold rolling. In order to describe the problem mathematically, the incompatible von Kármán equations were 

introduced as the governing equations. Given the deflection of the strip along the rolling direction presenting the 

periodic form, the incompatible von Kármán equations along with the free boundary conditions were simplified 

to be a nonlinear boundary value problem in dimensionless form and turned out to be a boundary layer problem. 

Then composite expansion-Ritz method (CERM) was proposed to solve the problem. The composite expansion 

method was used to determine the form of deflection, while the geometry parameters, such as wave length, 

positions of boundary layers, were obtained by Ritz method. Finally, the accuracy of CERM is verified by actual 

measured data. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Buckling induced by the residual stress is a common phenomenon in 

strip cold rolling and is usually called flatness defect. Due to the fact that 

a free thin strip bends in harmonic form to reduce the total potential 

energy within compressive stress region, waviness in edge and center 

tend to be the most typical flatness defect patterns. During the rolling 

process, the strip maintains flat under the rolling tension. However, in 

subsequent annealing or hot galvanizing processes, the latent defect as 

a result of residual stress (normal component along rolling direction) 

of strip would be converted to the manifested defect (large deflection), 

since the tension in these processes is quite small. Coman [7,8] clearly 

pointed out the incompatibility nature of the rolled strip buckling and 

estimated the critical load and the wavelength of the buckling waves 

with piecewise linear distribution of residual stress. Therefore, an essen- 

tial description of deflection in terms of residual stress is of significance 

to get deeper insights into the post buckling of cold thin strip. 

Large elastic deformations of thin plates/strips with incompatible 

strains or continuously distributed defects have been well studied. A 

modification on von Kármán equation for flexible elastic plates with 

dislocations and disclination was done by Zubov [26] . Considering both 

isolated and continuously distributed defects, several solutions of mem- 

brane containing distributed disclinations were discovered with the as- 

sumption of complete internal stress relaxation. Lewicka et al. [15] in- 

troduced the concept of ‘Growth ’ representative of the initial influences 
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of the process on thin strips, such as plasticity, swelling and shrinkage, 

as well as the plant morphogenesis. In addition, a derivation of von Kár- 

mán equations with the assumption of neglected feedback from deflec- 

tion to ‘Growth ’ was obtained. The growth strain tensor and growth cur- 

vature tensor purposed by Lewicka et al. instead of external load were 

then believed to be the real causes of the deflection and residual stress, 

and these could be described by incompatible von Kármán equations. 

Sharon et al. [21] demonstrated this point of view through interesting 

tests, showing that growing leaves and plastically strained ribbons can 

be relaxed to different shapes when they were cut in different directions 

for the partial relief of incompatible strains. 

With the identification of the above essence of post buckling prob- 

lem, the pure numerical method is widely used to investigate the rela- 

tionship between residual stress and deflection. Yukawa and Ishikawa 

[25] determined the buckling critical load and post buckling deflection 

with arbitrary form of residual stress by finite element method (FEM). 

Abdelkhalek et al. [1–3] investigated a completely coupled approach 

to simulate the stress profiles and flatness defects with a simple buck- 

ling criterion using specialized FEM software Lam/Tec3 and uncoupled 

asymtotic numerical method (ANM), rendering excellent computational 

buckling capability and more realistic results. Qin et al. [19] estimated 

the buckling critical load and wave configuration of oblique and herring- 

bone buckling with the spline FEM, pointing out shear stress being the 

main reason for oblique and herringbone buckle due to residual strains 

from the rolling process or applied non-uniform loading. Kpogan et al. 
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[13] present a numerical technique to model the buckling of a rolled 

thin sheet within the Arlequin framework, a three dimensional model 

based on 8-nodes tri-linear hexahedron. The resulting nonlinear prob- 

lem is solved by the ANM. 

In light of the non-linear nature of post buckling problem, semi- 

analytical method is also a common way, including the energy vaira- 

tion method (Timoshenko method, Ritz method) on the basis of the 

minimum potential energy principle. Timoshenko and Gere [22] first 

adopted the energy vairation method to determine the buckling and 

post-bucking of plates under uniform external in-plane compressions. 

Yang [24] , Fischer et al. [10–12] and Rammerstorfer et al. [20] set up 

a groups of typical distribution of residual stresses (or corresponding 

membrane forces), and predescribed polynomial form along transverse 

direction and harmonic form along rolling direction of buckling deflec- 

tion, and calculated coefficients of deflection form through Ritz method. 

Nakhoul et al. [16] established a multi-scale buckling model that con- 

siders the deflection variation along rolling direction obtained from von 

Kármán equations solution in energetic formultion. 

Noteworthily, the prebuckling problem of thin plates can be treated 

as a boundary layer problem [9] that involves reduced order of gov- 

erning equations when the small parameter becomes zero. This prob- 

lem can be solved by singular perturbation methods, including matched 

expansion method, composite expansion method [5,6] , multiple-scales 

method and WKB method, which have been summarized in detail by 

Nayfeh [17] . 

To overcome the limitation and complexity of matched expansion 

method, the composite expansion method is applied to analyze the post 

buckling problem of infinite thin rolled strip with only incompatible 

strain. This method was first proposed by Chien [5] to approximate the 

deflection and membrane stress of clamped thin circular plate under 

uniform normal pressure. Based on the Hencky’s solution for the cir- 

cular membrane, the attached correction term which is dominant in a 

narrow region close to the edge of the plate, was constructed to satisfy 

all boundary conditions. This work was highly improved by applying 

an unknown small parameter by Chien and Chen [6] . O’Malley [18] re- 

discovered the composite expansion method independently, dealt with 

a fundamental nonlinear initial value problem and showed how the 

method could be extended to similar problems for systems with two 

small parameters and for differential-difference equations with small de- 

lays. Bakri et al. [4] recently applied so-called O’Malley-Vasil’eva expan- 

sion method [23] to obtain an aymtotic approximation for the modified 

one-dimenssion Liouville–Bratu–Gelfand nonlinear two-point boundary 

value problem. 

In this paper, the relation of residual stress (in-plane state) and in- 

comaptibilty tensor was first established in incompatible von Kármán 

equations. Then composite expansion method was first applied to create 

the rolled strip’s deflection in a flexible form with unknown wave length 

and unknown positions of boundary layers. These unknown geometry 

parameters were calculated by Ritz method after eliminating the stress 

potential by deflection(using the method of constant variation). Actual 

measured strip’s residual stress and deflection are practically used to 

verify the accuracy of composite expansion-Ritz method. 

2. Overview of the model 

The basic geometric and physical model are first presented as below. 

Consider an infinite homogeneous isotropic elastic strip of thickness h 

and width b with Young’s modulus E and Poisson’s ratio v , whose mid- 

plane occupies the domain 

Ω ≡ { 

( 𝑥, 𝑦 ) ∈ ℤ 

2 |||0 < 𝑥 < 𝑏, −∞ < 𝑦 < ∞
} 

. 

Here, x is the transverse direction with unit vector i and y is the 

rolling direction with unit vector j . Considering the continuous process- 

ing, the range of variable y is set to be infinity. While the actual detected 

residual stress component 

�̄�𝑦 ≡ �̄�𝑦 ( 𝑥, 𝑦 ) 

is self-equilibrating in pre-buckling state (relative to 𝜎y in post buckling 

state). 

2.1. Boundary value prolem for post buckling of rolled strip 

The governning equations to post buckling of incompatible thin 

plates have been clearly derived by Zubov [26] and Lewicka et al. [15] , 

which can be written as: ⎧ ⎪ ⎨ ⎪ ⎩ 
𝐷 

ℎ 
Δ2 𝑤 − 𝐿 ( Φ, 𝑤 ) = 

𝑝 

ℎ 

1 
𝐸 

Δ2 Φ + 

1 
2 
𝐿 ( 𝑤, 𝑤 ) = 0 

by von K∧rm∧n , (1) 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝐷 

ℎ 
Δ2 𝑤 − 𝐿 ( Φ, 𝑤 ) = 

𝑝 

ℎ 

1 
𝐸 

Δ2 Φ + 

1 
2 
𝐿 ( 𝑤, 𝑤 ) = 𝜇

by Zubov , (2) 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝐷 

ℎ 
Δ2 𝑤 − 𝐿 ( Φ, 𝑤 ) = 

𝐷 

ℎ 

[
𝜈
(
∇ × 𝜿𝑔 × ∇ 

)
∶ ( 𝒌 𝒌 ) − ∇ ⋅ 𝜿𝑔 ⋅ ∇ 

]
1 
𝐸 

Δ2 Φ + 

1 
2 
𝐿 ( 𝑤, 𝑤 ) = 

(
∇ × 𝜺 𝑔 × ∇ 

)
∶ ( 𝒌 𝒌 ) 

by Lewicka . 

(3) 

Here, 𝐷 = 𝐸 ℎ 3 ∕ 12(1 − 𝑣 2 ) is the bending stiffness of plate, k = i × j ,w 

≡ w ( x, y ), Φ ≡ Φ( x, y ) and p ≡ p ( x, y ) represent deflection, stress 

potential and normal external load of plate respectively. 𝜇 ≡ 𝜇( x, y ) 

defined by Zubov [26] is a metric of defects. Growth strain ten- 

sor 𝜺 𝑔 ≡ 𝜀 𝑔 𝑥 ( 𝑥, 𝑦 ) 𝒊 𝒊 + 𝜀 
𝑔 
𝑥𝑦 ( 𝑥, 𝑦 ) 𝒊 𝒋 + 𝜀 

𝑔 
𝑦𝑥 ( 𝑥, 𝑦 ) 𝒋 𝒊 + 𝜀 

𝑔 
𝑦 ( 𝑥, 𝑦 ) 𝒋 𝒋 and growth cur- 

vature tensor 𝜿𝑔 ≡ 𝜅𝑔 𝑥 ( 𝑥, 𝑦 ) 𝒊 𝒊 + 𝜅
𝑔 
𝑥𝑦 ( 𝑥, 𝑦 ) 𝒊 𝒋 + 𝜅

𝑔 
𝑦𝑥 ( 𝑥, 𝑦 ) 𝒋 𝒊 + 𝜅

𝑔 
𝑦 ( 𝑥, 𝑦 ) 𝒋 𝒋 have 

been mentioned. Operators involved in ( 1 )–( 3 ) are expressed as: 

the two-dimensional Laplace operator Δ = 𝜕 2 ∕ 𝜕 𝑥 2 + 𝜕 2 ∕ 𝜕 𝑦 2 , the two- 

dimensional Hamilton operator ∇ = 𝜕 ∕ 𝜕 𝑥 𝒊 + 𝜕 ∕ 𝜕 𝑦 𝒋 , and the Airy ’s 

bracket L ( Φ, w ) = ΔΦΔw − ∇∇Φ: ∇∇ w , where ‘: ’ is the double-scalar 

product operator, similarly, L ( w, w ) = ( Δw ) 2 − ∇∇ w : ∇∇ w . 

The second equation in Eq. (1) is so-called compatibility equation, 

and is only suitable for thin elastic plate bending under normal exter- 

nal load. Aiming at post buckling of thin cold rolled strip without any 

external load, we have ⎧ ⎪ ⎨ ⎪ ⎩ 
𝐷 

ℎ 
Δ2 𝑤 − 𝐿 ( Φ, 𝑤 ) = 0 

1 
𝐸 

Δ2 Φ + 

1 
2 
𝐿 ( 𝑤, 𝑤 ) = ( ∇ × 𝜺 𝑝 × ∇ ) ∶ ( 𝒌 𝒌 ) = 𝐼 

𝑖𝑛 Ω, (4) 

where 𝜺 𝑝 ≡ 𝜀 𝑝 𝑥 ( 𝑥, 𝑦 ) 𝒊 𝒊 + 𝛾
𝑝 
𝑥𝑦 ( 𝑥, 𝑦 ) 𝒊 𝒋 + 𝛾

𝑝 
𝑦𝑥 ( 𝑥, 𝑦 ) 𝒋 𝒊 + 𝜀 

𝑝 
𝑦 ( 𝑥, 𝑦 ) 𝒋 𝒋 is two- 

dimensional plastic strain tensor, which is generated by rolling 

and can be treated as an initial strain in post buckling analysis, I ≡ I ( x, 

y ) is a known scalar function relate to plastic strain. The first equation 

in Eq. (4) is obviously tenable when there is no initial curvature in 

strip. Meanwhile, the second equation in Eq. (4) can be obtained based 

on the theory proposed by Kröner [14] and Lewicka et al. [15] where 

plastic strain is used to replace growth strain tensor specifically. As is 

known to all, the relevant boundary conditions in edges are 

𝜕 2 𝑤 

𝜕 𝑥 2 
+ 𝑣 

𝜕 2 𝑤 

𝜕 𝑦 2 
= 0 , 𝜕 

3 𝑤 

𝜕 𝑥 3 
+ ( 2 − 𝑣 ) 𝜕 

3 𝑤 

𝜕 𝑥𝜕 𝑦 2 
= 0 , 𝜕 

2 Φ
𝜕 𝑦 2 

= 0 , 

𝜕 2 Φ
𝜕 𝑥𝜕 𝑦 

= 0 in 𝑥 = 0 , 𝑏. (5) 

2.2. Simplification of boundary value prolem under some assumptions 

In order to figure out the property of incompatibility in rolling, we 

consider the situation of trivial solution w 

≡ 0. The first equation in Eq. 

( 4 ) is automatically satisfied, the second one, under the assumption that 

the feedback from deflection to incompatibility is ignored [15] , can be 

written as 

1 
𝐸 

Δ2 Φ̄ = 𝐼 in Ω, (6) 
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