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A B S T R A C T

Realistic description of heterogeneous material behavior demands more accurate modeling at macroscopic and
microscopic scales. In this frame, the multiscale techniques employing homogenization scheme offer several
solutions. Most recently developed two-scale scheme employing second-order homogenization requires the
nonlocal theory at the macrolevel, while the classical local continuum theory is kept at the microlevel. In this
paper, a new second-order computational homogenization scheme is proposed employing the higher-order
theory at both macro- and microlevel. Discretization is performed by means of the C1

finite element developed
using the strain gradient theory. The new gradient boundary conditions employed on representative volume
element (RVE) are derived. The relation between the internal length scale parameter and the RVE size has been
found. The new procedure is tested on a benchmark example, where the results have been compared to the
solutions obtained by the usual second-order homogenization using the local concept on the RVE.

1. Introduction

It is known that all engineering materials can be treated as
heterogeneous at some scale of observation. Therein, material hetero-
geneity and anisotropy play a major role, because almost all materials
are heterogeneous and anisotropic due to their natural structure,
particularly on the microscopic scale. Profound demands on structural
integrity in recent years lead to development and the application of new
materials with complex microstructure giving desired material proper-
ties. Numerical analysis of mechanical behavior of this new class of
materials emerges necessity for an advanced numerical tools employing
more realistic material description. Heterogeneous metals such as
nodular cast iron are widely used as the material of structural
components in mechanical engineering. The ductile nodular cast iron
consists of graphite nodules in a ferritic matrix providing large fatigue
strength. The geometrical and material properties of the constituents
making up the microstructure have a significant impact on the material
behavior observed at the macroscale [1]. In addition, the external
loading applied at the macroscale might cause changes in the micro-
structural morphology e.g., void formation, damage as well as cracking,
which can put structural integrity at risk. Therefore, in order to assess
structural integrity and to predict structural lifetime, an analysis of the
evolving microstructure is necessary.

During recent years, a special attention has been directed to the
investigation of the relations between the macroscopic material beha-
vior and its microstructure. The determination of an effective material

parameters was possible only by experiments or by semi-analytical
homogenization methods based on the assumptions of constitutive
behavior. Unfortunately, this class of methods cannot adequately
capture physical mechanisms managing behavior of the microconsti-
tuents. In a multiscale approach, the response of coarse scale problem
incorporates physical understanding of material behavior at the lower
scales. Firstly, the homogenization concept has been developed in the
framework of a classical local continuum theory. In this concept several
homogenization approaches are available, such as the mathematical
method of homogenization, the Mori-Tanaka method, the double
inclusion model, the numerical homogenization, asymptotic homoge-
nization etc., as can be found in [2–4]. However, in more recent
formulations several computational homogenization approaches have
been used [5–12]. These computational procedures are based on the
solution of two boundary value problems, one at the macroscopic and
one at the microscopic scale. The results obtained by the simulation of a
microscopic representative sample of material named Representative
Volume Element (RVE) are used at the macrolevel analysis. Thus, the
computational multiscale approach does not require an explicit con-
stitutive relation at the macrolevel, which allows modeling of complex
microstructure geometry as well as deformation responses. When in the
scale transition procedure only the first displacement gradient is
involved, whereby the stress at a material point depends only on the
strain (and other state variables) at the same point, this method is
referred as the first-order homogenization [13–15]. However, the first-
order computational homogenization relies on the intrinsic assumption
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of uniformity of the macroscopic stress and strain fields appointed to a
representative volume element (RVE). Due to uniformity assumption,
the first-order homogenization is not adequate for the problems dealing
with high gradients, where the macroscopic fields can vary rapidly.
Therefore, only simple loading cases can be studied, which is consid-
ered as a deficiency. Another major shortcoming of the first-order
homogenization approach is an inability to encompass microstructural
size effects in a material, such as strain localization phenomena and
material softening.

The mentioned shortcomings of the first-order approach have been
overwhelmed in an extended formulation proposed in a second-order
computational homogenization procedure [8,16,17]. This computa-
tional strategy comprises a nonlocal continuum theory at the macro-
scale, which takes into account the influence of a surrounding material
on the behavior of a considered material point [18,19]. Herein, the size
effects can be accounted for through the RVE size. The microstructural
level represented by the RVE is treated as an ordinary local continuum,
see [20,21], which is in this case able to capture more complex
deformation modes. For the numerical implementation of the multi-
scale framework, finite element method is the most popular approach.
To solve boundary value problems employing the nonlocal theory
which is in second-order homogenization adopted at the macrolevel, C1

continuous interpolations should by applied in appropriate finite
element formulations, where displacements, as well as displacement
gradients (strains) should be continuous functions. On the other hand,
at the microstructural level classical theory is preserved, where the
standard finite elements employing C° continuity are usually used for
discretization. Thus, based on the aforementioned numerical imple-
mentation aspects, the multiscale scheme employing the second-order
computational homogenization, which comprises the nonlocal theory at
the macrolevel and the local theory on the microlevel in the following
text will be referred as the NL-SL (nonlocal-standard local) second-
order homogenization. Unfortunately, the NL-SL second-order compu-
tational homogenization approach suffers from difficulties in the scale
transition methodology due to the coupling between the nonlocal
theory at the macroscale and the local concept on the RVE. Namely,
the second-order macrolevel gradient cannot be related to the micro-
level higher-order gradient as a true volume average. Therefore, in the
micro-to-macro scale transition, after resolving Hill-Mandel energy
condition, the homogenized double stress requires a modified definition
at the microstructural level. Furthermore, in case of generalized
periodic boundary conditions, an artificial stress concentration appears
at the RVE corner nodes, as result of suppressed microfluctuations at
the RVE corners [17]. In order to cope with this problem, some
regularization methods have been proposed. A substantially different
approach has been derived in [21,22] for the multiscale kinematics,
where zero projection of the microfluctuations at the macrolevel is
enforced through the principle of orthogonality. The orthogonality is
enforced by a vanishing surface integral of the micro-macro variable
scalar product. Even though such formulation has notable advantages,
again, some relaxed constraints on the fluctuation field are required to
avoid stress concentrations at the corners. Similar solution has been
recently proposed in [23], using the method of multiscale virtual
power. In this approach, the external body forces and macroscale
displacements are used in the macro-to-micro scale transition. A novel
concept of conservation of kinematical quantities is introduced and
used for derivation of the boundary conditions and homogenized
quantities. This approach can be considered as an extension of the
framework derived in [17,22], since the resulting relations in the
absence of the volume forces and inertia effects coincide with the
relations derived in the above mentioned references. Even though
significant research has been published on the macro-to-micro scale
transition in the second-order homogenization framework, this challen-
ging problem still remains open for further studies.

In addition, the discretization of the macrostructural level in the NL-
SL scheme is usually performed using mixed finite element formula-

tions, where the C1 continuity requirements are fulfilled in a weak
sense, via Lagrange multiplier or penalty method [24–29]. But, the
mixed finite element formulations show a poor behavior compared to
the C1

finite elements [29–31]. Besides the mixed finite element
formulation, other approaches can be used for solving gradient
problems, such as the discontinuous Galerkin method [32,33], the
meshless methods [34–36], or the boundary element methods [37–39].
A comprehensive overview can be found in [40]. Despite large efforts,
an efficient numerical formulation for solving strain gradient problems
is still unresolved.

In this paper the authors propose a new second-order computational
homogenization scheme employing the nonlocal theory at both scales.
Therein, the mathematical consistency of the transition methodology is
ensured, considering conforming continuum theories used at different
scales. The computational scheme is derived adopting the gradient
elasticity theory and small strain setting. The discretization at both the
macro and microlevel is performed by the C1 continuity plane strain
triangular finite element derived and verified earlier in [41,42]. In that
sense, the newly proposed framework derived in this contribution will
be referenced as the NL-NL (nonlocal-nonlocal) second-order computa-
tional homogenization. The macro-to-micro scale transition methodol-
ogy is derived using the gradient displacement and gradient generalized
periodic boundary conditions. A consistent NL-NL homogenization
scheme has been proposed. The derived scale transition methodology,
as well as homogenization procedure were embedded into the finite
element program ABAQUS by means of FORTRAN subroutines. The
performance and accuracy of the proposed approach has been verified
on an elastic shear layer example.

The paper is organized as follows. In Section 2 the gradient theory is
discussed and the constitutive relations of the Aifantis gradient
elasticity theory are displayed. Section 3 deals with the numerical
implementation of the Aifantis theory into finite element method. The
basic relations of the C1 triangular finite element are derived. Also, the
physical role of the element nodal degrees of freedom is discussed.
Some issues of implementation of a non-standard finite element into the
commercial FE software ABAQUS are described. In Section 4, a new
gradient-enhanced second-order computational homogenization is de-
veloped, where the complete micro-macro transition procedure is
explained. The dependence of the RVE size on the length scale
parameter of the Aifantis gradient theory is investigated. The perfor-
mance of the newly developed homogenization procedure is verified in
Section 5. The standard benchmark problem of shear layer is discussed,
where the accuracy of the results obtained by the NL-NL algorithm is
confirmed by the comparison to the NL-SL homogenization scheme
available in the literature.

2. Higher-order continuum theory

2.1. Small strain second-gradient continuum formulation

In a classical small strain continuum theory, kinematical behavior at
time t is described by the vector of the displacement field uu e= i i. The
displacement gradient describes the second-order strain tensor ex-
pressed by the components as

ε u u= 1
2

( + ).ij i j j i, , (1)

In the second-gradient continuum theory, a third-order strain
gradient tensor η3 is introduced, which is defined as gradient of the
strain tensor

ηη e e e ε= ⊗ ⊗ = ∇ ⊗ ,ijk i j k
3

(2)

with a minor symmetry in the last two indices η η=ijk ikj, [43]. Accord-
ingly, the variation of the strain energy density function may be
expressed in terms of both the strain and the strain gradient as
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