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A B S T R A C T

To identify multiple degree-of-freedom vibrating structures with local nonlinearities, a two-stage time domain
approach based on the subspace method is proposed in this study. The locally nonlinear system to-be-identified
is divided into an underlying linear part described by the FRF and a local nonlinear part described by nonlinear
coefficients. The identification process of the proposed approach is not the same as the existing single-stage
method. It identifies the underlying linear system before the local nonlinearities. The proposed approach
reduces the dimensions of matrices which are used to calculate the system's state-space model and also gives a
more appropriate estimation of the order of the underlying linear system with the utilization of classical
spectrum estimation techniques. Both numerical and experimental examples are given to verify the performance
of the method. Results show that the method is more accurate and reliable than the single-stage method,
especially in a noisy environment.

1. Introduction

In the past few decades, lots of effort has been put into the field of
identification of nonlinear structural systems and various kinds of
methods have been proposed. Some developed techniques include the
restoring force surface method, the Volterra series, the time series
analysis, the Kalman filter based method [1–11]. Among the various
kinds of nonlinear structures, there is a common type that the
nonlinearities of the system are caused by several local nonlinearities.
For example, the joint connecting different substructures is a major
source of the local nonlinearity with features such as friction, gaps,
stick-slip behavior. The assumption of local nonlinearities simplifies
the decoupling of linear and nonlinear parts of the system and thus
makes it possible to utilize some well-developed linear techniques.

Among the various kinds of approaches is one group of methods
based on reverse path formulation. These methods separate the whole
system into underlying linear part and nonlinear part and are
especially suitable for nonlinear systems with local nonlinearities.
Bendat [12] firstly introduced the reverse path (RP) spectral method
to identify single degree-of-freedom (DOF) systems and then Rice and
Fitzpatrick [13] developed the method to identify multiple DOF
systems. In order to overcome the limitations of the RP method such
as requirement of excitation location, a more complex conditioned
reverse path (CRP) method was proposed by Richards and Singh [14].
Since the formulation of the CRP method is complicated and causes

more computational complexity, Adams and Allemang [15] put for-
ward the nonlinear identification through feedback of the output
(NIFO) method and Magnevall et al. [16] proposed another modified
RP method to alleviate the computational burden. Zhang et al. [17]
developed a forward selection reverse path method to locate spatial
nonlinearities in multiple DOF system. Most of the RP methods are
frequency domain methods and are based on the spectrum analysis
techniques. The orthogonalized reverse path (ORP) method, as a time
domain method, proposed by Muhamad et al. [18] can be treated as a
counterpart of the frequency domain CRP method. Another time
domain method called the nonlinear subspace identification (NSI)
method was proposed by Marchesiello and Garibaldi [19] and some
comparisons with the NIFO method are also demonstrated in their
study. Noel et al. [20] compared the time domain and frequency
domain subspace-based methods based on a nonlinear spacecraft
study. Haroon and Adams [21] also used the time and frequency
domain nonlinear system characterization to identify mechanical fault.
Moaveni and Asgarieh [22] applied the subspace identification method
to identify nonlinear structures by treating them as time-varying linear
systems.

The NSI method overcomes the drawback that the estimations of
nonlinear coefficients and frequency response function (FRF) of the
underlying linear system are less accurate near the resonance zone
because of the increased signal correlation [19]. Also, as a time domain
method, it depends less on the accuracy of the spectral analysis
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techniques. The NSI method is essentially based on the stochastic
subspace method [23] which is a valuable technique especially for
identification of linear system. The stochastic subspace method is
established on the discrete state-space model and utilizes projection of
matrix and singular value decomposition to enhance the method's
robustness and is suitable for identification of multiple-input multiple-
output (MIMO) system in noisy environment. Similar to other fre-
quency domain RP methods, the NSI method also treats the whole
system as an underlying linear system with several internal nonlinear
restoring forces and then reverses the input-output path to formulate
state-space models. The method utilizes properties of the derived
formulation of the FRF of the underlying linear system and calculates
the local nonlinear coefficients under the assumption that the mass
matrix, damping matrix and stiffness matrix of the system are all
symmetrical matrices.

In the present study, a two-stage time domain method based on
stochastic subspace algorithm is proposed. The method identifies the
linear part and the nonlinear part of the whole system in two sequential
stages and thus needs two measurements under different levels of
excitation. The method is more accurate and reliable benefitting from a
more suitable way to determine the order of the state-space model than
a single-stage edition especially in noisy environment. Also, estimating
the system's matrices in two steps can alleviate possible numerical
problems such as calculating matrices with large dimensions. In
Section 2, the stochastic subspace method is simply introduced. In
Section 3, the proposed two-stage method is described and in Section
4, numerical and experimental examples are given to illustrate the
correctness of the analysis and the effectiveness of the method. Also,
some comparisons are made to demonstrate the performances of the
two-stage method compared with the single-stage method.

2. Stochastic subspace method

The stochastic subspace method, an identification method for
discrete linear state-space models, contains a group of algorithms
[23–26] which utilize the projection of matrix and the singular value
decomposition techniques. In this section, the numerical algorithms for
the subspace state-space system identification (N4SID) [23] are given
briefly.

The purpose of the N4SID is to identify the discrete-time determi-
nistic stochastic state-space model with measured values of inputs and
outputs. The identified model is represented as
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where xk, uk, yk denote the state vector, the input vector and the
output vector at the discrete time tk, respectively. wk and vk
respectively represent the process and measurement noises and are
all assumed to be the zero-mean Gaussian white noises. Ad, Bd, Cd
and Dd are the matrices to-be-identified of the discrete-time state-
space model. Iterating the two equations in Eq. (1) yields
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For identifying the matrices Ad and Cd, a so-called extended
observability matrix Γ and two block Toeplitz matrices Θ and Ξ are
defined as
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Then yk in Eq. (2) at different discrete times can be rearranged as

Y ΓX ΘU ΞW V= + + + (6)
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in which N and r denote the user-defined integers which satisfy r n> 2
and N n> > 2 (n is the order of the state-space model in Eq. (1)).

To remove the latter three terms in the right side of Eq. (6), the
matrix projection and the instrumental variables techniques are
utilized. Specifically, right multiplication of a projection matrix ∏U

⊥
T

and a matrix PT results in
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in which UP and YP are constructed similarly as the matrices U and Y,
and the relationship ΞW V P 0( + ) ∏ =T

U
⊥

T can be guaranteed by using
the previous measured data [27]. To increase the accuracy of the
subsequent singular value decomposition, two full rank matrices
H P P PP= ( ∏ ) ( )T T

U1
⊥ −1 1/2

T and H I=2 [28] are added into Eq. (8) and
the following equation is derived
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It can be concluded from Eq. (8), through some rank analysis, that
the column space of Γ is the same with the column space of Y P∏ T

U
⊥

T .
Therefore, through the singular value decomposition, the estimated
observability matrix Γe and the true observability matrix Γ have the
same column space and can be transformed by right multiplying a
nonsingular matrix T as
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where S is the diagonal matrix in singular value decomposition and Q
is the matrix obtained by removing some columns from Q according to
the values of their corresponding diagonal elements in S. Then the
estimated matrices Ad

e and Cd
e can be computed from Γe. Cd

e is the first
s lines of Γe in which s represents the dimension of output yk. Ad

e can
be calculated by the shift invariance method [28] with
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