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A B S T R A C T

This paper analyzes laminar natural convection of micropolar fluid in a trapezoidal cavity with a local heater.
The bottom and top walls of the enclosure are adiabatic while the left vertical wall and part of the right inclined
wall are kept at low and high constant tempratures, respectively. The rest part of the inclined wall is adiabatic.
Governing equations formulated in dimensionless variables such as stream function, linear vorticity, angular
vorticity and temperature have been solved by finite difference method of the second order accuracy.
Computations have been carried out to analyze the effects of Rayleigh number, Prandtl number, vortex viscosity
parameter and the heater location on streamlines, isotherms and vorticity profiles as well as the variation of the
average Nusselt number and fluid flow rate. It has been shown that bottom position of the heater reflects the heat
transfer enhancement.

1. Introduction

The recent industrial processes are characterized by the use of new
materials, which cannot be described by Newtonian fluids. Due to this
reason, many non-Newtonian models have been proposed. Among these
models, the micropolar fluids have been introduced by Eringen [1,2] in
order to take into account the effects of local structure and micro-
motions of the fluid particles which cannot be described by the classical
models. The incompressible micropolar fluids represent liquids consist-
ing of rigid, randomly oriented spherical particles suspended in a
viscous medium, where the deformation of fluid particles is ignored.
The related mathematical model is based on the introduction of a new
vector field (the microrotation), which describes the total angular
velocity field of the particles rotation. Hence, one new equation is
added representing the balance law of local angular momentum. There
are many examples of micropolar fluids flows that are relevant for
practical applications as flows of biological fluids in thin vessels,
polymeric suspensions, liquid crystals, slurries, colloidal fluids, exotic
lubricants, etc. (see Chiu and Chou [3]). During the last few decades,
the research interest in micropolar fluid theory has significantly
increased due to its enormous applications in many industrial pro-
cesses. The pioneering work of Eringen [1,2] was extended in boundary
layer theory by Peddieson and McNitt [4]. Peddieson [5] applied the
micropolar fluid model in turbulent flow also. Extensive reviews of the

theory and its applications can be found in the review papers by Ariman
et al. [6,7] and in the books by Lukaszewicz [8] and Eringen [9]. It is
worth pointing out here the very interesting papers by Borrelli et al.
[10–13] on MHD stagnation point flow of a micropolar fluid. Some
theoretical studies have been compared and favorably agree with
experimental measurements (see Ariman et al. [14]). Furthermore,
Kolpashchikov et al. [15] have indicated a way to measure micropolar
parameters experimentally. However, more experimental and theore-
tical work is still required on this topic.

Further, it should be stated that during the past several decades,
extensive studies on heat transfer in regular cavities and enclosures
filled with a viscous (Newtonian) fluid have been done and various
extensions of the problem have been reported in the literature (see Vahl
Davis [16]). However, it is necessary to study the heat transfer for more
complex geometries because the prediction of heat transfer for complex
geometries is a topic of great importance and these surfaces often occur
in many applications (see Peterson and Ortega [17]).

Motivated by the practical importance of the micropolar fluids, the
main objective of this paper is to understand the fundamentals of
various heating and cooling strategies, and to achieve a high perfor-
mance for the free convection in a trapezoidal cavity filled with a
micropolar fluid having a local heat source using the mathematical
micropolar fluid model proposed by the pioneering papers of Eringen
[1,2]. It should be mentioned that numerical studies on the free
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convection flow in a two-dimensional right angle trapezoidal enclosure
filled with a viscous fluid or fluid-saturated porous medium has been
conducted by several authors [18–26]. Iyican and Bayazitoglu [18]
investigated natural convective flow and heat transfer within a
trapezoidal enclosure with parallel cylindrical top and bottom walls
at different temperatures and plane adiabatic side walls. A critical
Rayleigh number has been presented depending on the tilting angle,
where unicellular convection has been observed. Perič [19] studied
natural convection in trapezoidal cavities with a series of systematically
refined grids from 10×10 to 160×160 control volume and observed
the convergence of results for grid independent solutions. Kuyper and
Hoogendoorn [20] investigated laminar natural convection flow in
trapezoidal enclosures to study the influence of the inclination angle on
the flow and also the dependence of the average Nusselt number on the
Rayleigh number. Boussaid et al. [21] studied the thermosolutal heat
transfer within trapezoidal cavity heated at the bottom wall and cooled
at the inclined top wall. We mention the very interesting studies on
natural convection in trapezoidal enclosures filled with either viscous
fluid or porous medium by Varol et al. [22,23]. Numerical results
indicated that there exist significant changes in the flow and tempera-
ture fields as compared with those of a differentially heated square
porous cavity. These results lead, in particular, to the prediction of a
position of minimum heat transfer across the cavity, which is of interest
in the thermal insulation of buildings and other areas of technology.
Finally, we mention the paper by Basak et al. [24] studied the heat flow
patterns in the presence of natural convection within trapezoidal
enclosures with heatlines concept and uniformly and non-uniformly
heated bottom wall, insulated top wall and isothermal side walls with
an inclination angle. Momentum and energy transfer are characterized
by streamfunctions and heatfunctions, respectively, such that stream-
functions and heatfunctions satisfy the dimensionless forms of momen-
tum and energy balance equations, respectively. Finite element method
has been used to solve the velocity and thermal fields and the method
has also been found robust to obtain the stream function and heat
function accurately.

It should be noted also that natural convection within the trapezoi-
dal enclosures filled with Newtonian or non-Newtonian fluids, porous
media are highly useful [18–26] for the applications in the greenhouse-
type solar stills, desalination, solar collectors, solar cavity receiver,
solar distiller, melting and solidification of phase change materials,
molten metal processing, solar cooking, designs of buildings and attics,
heat recovery or indirect heat exchanges.

2. Basic equations

A sketch of the two-dimensional right-angle trapezoidal cavity filled
with a micropolar fluid is presented in Fig. 1 with dimensional
Cartesian coordinates x and y . The trapezoidal enclosure is bounded
by isothermal cooled vertical wall x( = 0) of temperature Tc, adiabatic
inclined wall x L y L l H( = − ( − )/ ) with a local heater of temperature
Th T T( > )h c and adiabatic top and bottom walls. The utilized micropolar
fluid is considered to be heat-conducting, isotropic, polar fluid in which
deformation of molecules is neglected. Physically, a micropolar fluid
includes molecules which can rotate independently of the fluid stream
flow and its local vorticity. Therefore micropolar fluid is the medium
whose behavior during their flows is affected by the microrotation, i.e.
the local rotational motion of fluid molecules contained in a given fluid
volume element [27,28]. In this micropolar fluid model, two indepen-
dent kinematic vector fields are introduced – one representing the
translation velocities of fluid particles; and the other representing
angular (spin) velocities of the particles, called as microrotation vector
[8].

The micropolar fluid flow is supposed to be laminar and the
micropolar fluid properties are supposed to be constant except for the
density variation which is satisfied to the Boussinesq approximation.
Taking into account the theory of Eringen for the micropolar fluid flow
the governing equations can be written in dimensional Cartesian

Nomenclature

g gravitational acceleration, m·s−2

H height of the cavity, m
h length of the heat source, m
j micro-inertia density, j L= 2, m2

K vortex viscosity parameter, K κ μ= /
L length of the bottom wall, m
l length of the upper wall, m
N dimensionless microrotation
N dimensional microrotation, s−1

Nu local Nusselt number
Nu average Nusselt number
p pressure, Pa
Pr Prandtl number, ν αPr = /
Ra Rayleigh number, Ra gβ T T L αν= ( − ) /( )h c

3

T temperature of the fluid, K
Tc temperature of the cooled wall, K
Th temperature of the hot wall, K
u v, dimensional velocity components along x and y coordi-

nates, m·s−1

u, v dimensionless velocity components along x and y coordi-
nates

x dimensional coordinate measured along the bottom wall
of the cavity, m

y dimensional coordinate measured along the vertical wall
of the cavity, m

x, y dimensionless Cartesian coordinates

Greek symbols

α thermal diffusivity, m2·s−1

β volumetric expansion coefficient of the fluid, K−1

γ spin-gradient viscosity,γ μ κ j= ( + /2) , kg·m·s−1

θ dimensionless temperature
κ vortex viscosity, kg·m−1·s−1

μ dynamic viscosity, kg·m−1·s−1

ρ fluid density, kg·m−3

ψ dimensionless stream function
ω dimensionless vorticity

Fig. 1. Physical model and coordinate system.
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