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A B S T R A C T

In this paper, a semi-analytic solution is proposed to solve the subsurface stress distribution and plastic zones of
an elastic-perfectly plastic half-space with cracks under contact loading. The cracks can be treated as a
distribution of edge dislocations with unknown densities based on the distributed dislocation technique. These
unknown dislocation densities, contact area and surface pressure distribution can be obtained iteratively when
the surface displacement due to the substrate cracks and contact loading is converged by a numerical algorithm
according to the conjugate gradient method. The plastic zones at crack tips can be determined by canceling the
stress intensity factor (SIF) due to the closure stress and that due to the external applied load based on the
Dugdale model of small scale yielding. It is noticed that the plastic zone sizes are affected by the original crack
length and depth, yield strength of substrate and loading conditions. This solution might provide guidance for
the fracture mechanics analysis of materials with cracks in a half-space.

1. Introduction

Micro-defects, such as cracks and inclusions, commonly exist in
engineering materials and structures. These defects are often formed in
materials during their manufacturing or utilization process. The
presence of these defects can significantly influence the mechanical
properties of materials and may eventually result in materials damage
and structural failure. Especially, when cracks are beneath the material
surface under contact loading, this loading may cause cracks to
propagate easily and eventually damage the engineering components,
such as gears, bearings, rollers and cams. For example, due to the stress
concentration caused by the inclusions in the composite materials
under external loading, cracks and dislocations could be initiated and
propagated at the vicinities of the inclusions [1].

In the past few years, the analysis of the elastic deformation of
materials with cracks or other types of microdefects has been reported
in many works [2–9]. For example, the subsurface deformation of
materials with cracks under contact loading was investigated by Zhou
et al. [10] based on the distributed dislocation technique (DDT) [11].
Then, they also considered the interaction between cracks and inho-
mogeneous inclusions in a half-space or an infinity space under the
external loading on the material properties [12,13]. Afterwards, Dong
et al. [14] studied the elastohydrodynamic lubrication effect on the
elastic properties of materials with multiple inhomogeneous inclusions
and cracks in a half-space. However, all the above-mentioned studies

were just concerned the elastic properties of materials with cracks and
inhomogeneous inclusions.

In the actual case, crack tips easily yield when the materials are
subjected to the external loading since the stresses at crack tips are
large even though the applied loading is very small. Therefore, a more
accurate description of materials with cracks could be obtained when
considering their plastic zones, which is beneficial to analyze the crack
initiation and propagation [15–21]. Many factors, such as the loading
conditions, material and crack properties, have significant influence on
the stress distribution and plastic zones of crack tips. Irwin model [22]
and Dagdale model [23] are the earliest theoretical works focused on
the plastic zone of crack tips. Irwin model was usually used to estimate
the extent ahead of a crack tip. The plastic zone size was determined by
setting the crack tip stress to the yield stress. Dugdale model assumed
the plastic zone of crack tips was a thin strip and its size could be
determined by canceling the SIF due to the applied load and that due to
the closure stress.

Recently, numerous works conducted by Yi et al., Hoh et al. and Fan
et al. [24–37] were focused on the plastic zone size and crack tip
opening displacement of the different types of cracks (Zener-Soroh
crack, Griffith crack and arc-shaped crack) based on modified Irwin or
Dugdale models. Moreover, Chen et al. [38] also proposed an evalua-
tion method to study the loading conditions on the effect of reverse
plastic zone size for a center crack in a plate. All the above mentioned
works assumed that cracks were in the infinite solid materials under
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external loading or without loading. However, cracks are usually
located near a material surface subjected to contact loading or other
loading conditions, which might make the damage effect more promi-
nent compared with the result of cracks in an infinite space under
remote stress. This damage analysis needs an accurate study of the
plastic zone size of crack tips, surface contact area and pressure
distribution, and the subsurface stress field.

This study aims to develop a semi-analytical solution for the stress
distribution and plastic zones of an elastic-perfectly plastic half-space
with cracks subjected to contact loading. The plastic zone size can be
obtained by vanishing the SIF due to the closure stress and that due to
the external contact loading. This model can analyze the subsurface
stress distribution and the effect of the yield stress of materials, crack
length and depth, and loading conditions on the plastic zone size of
crack tips, which provides a guideline for the properties of the plastic
deformation of materials with cracks.

2. Methodology

2.1. Problem description and solution approach

In this study, a two-dimensional (xOz Cartesian coordinate) contact
problem between a rigid cylinder (ER and υR) with the radius R and an
elastic-perfectly plastic half-space (ES and υS) with cracks

φ mΓ ( = 1,2, ⋯ )φ , is considered, as shown in Fig. 1(a). The normal load
W pushes the cylinder into the half-space to induce the contact
problem. The red lines ahead of crack tips are the plastic zones
according to the Dugdale model.

In order to solve the governing equation for the substrate stress
distribution of this contact problem, cracks can be treated as a
distribution of dislocations with unknown densities ρ⊥ and ρ⊢ by the
DDT. In this way, the original contact problem (Fig. 1(a)) in an
inhomogeneous elastic-perfectly plastic half-space can be transformed
into a homogeneous contact problem (Fig. 1(b)).

The computational domain with cracks and plastic zones under the
contact surface is discretized into N N×x z square elements of the same
size 2∆ ×2∆x z shown in Fig. 2. Each element is indexed by a sequence of
two integers (α γ, ) with α N γ N0 ≤ ≤ −1,0 ≤ ≤ −1x z . The detailed calcu-
lation method to solve the unknown contact area, surface pressure
distribution, dislocation densities and surface displacement due to the
substrate cracks and contact loading can be found in Appendix A.

The stresses at the sharp crack tips are predicted to be infinite based
on the linear elastic analysis. However, they are finite in real materials
since the radius of crack tips must be finite. According to the Dugdale

model, by assuming that the stresses at the crack tips of the effective
crack equal to the yield stress σYS of matrix material, the stress
singularity at crack tips will disappear. To determine the plastic zone
size at crack tips, the summing of the SIFs KIρ due to the closure stress
and KI resulting from the applied load must be zero [39]. Hence:

K K+ =0II ρ (1)

For the cracks in an elastic-perfectly plastic half-space under contact
loading, KI and KII exist simultaneously, then the modified Dugdale
model is used in this study to investigate the plastic zone size of crack
tips. The condition to solve the plastic zone size of crack tips can be
rewritten as follows:
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where the superscripts L and R indicate the left and right crack tips,
respectively; the subscripts I and II indicate the Mode I and Mode II
cracks, respectively.

The key point for obtaining the plastic zone size of crack tips is to
develop the method to calculate the SIFs due to the closure stress and
the applied loading. The solution to obtain the expressions of KIρ and
KIIρ is presented in Section 2.2, while the solution to calculate the
results of KI and KII is shown in Section 2.3. When the plastic zone sizes
are calculated, the subsurface stresses influenced by the plastic zone of
crack tips should be updated.

Based on the limitations of the Dugdale crack model (the plastic
zone of crack tips must be symmetric), this study just considers the case
that the center of crack is same as the loading indentation, which means

Fig. 1. Schematic of the contact system with the plastic zones (red lines) of the crack: (a) the original problem and (b) the converted homogeneous problem. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Discretization of the computational domain into N N×x Z elements of the same size.
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