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a b s t r a c t

The design of a damping layout can result in a frequency-focused reduction of vibration responses.
Theoretical approaches that relate the spatial-damping parameters with the frequency content of the
damping are limited. This research introduces a theoretical approach to damping-layout design (location
and size) with frequency-content control. Initially, the frequency-response functions (measured or si-
mulated) are modified to obtain the required damping layout via spatial-damping identification meth-
ods. The use of these methods provides a straightforward relationship between the frequency responses
and the targeted spatial damping. The Lee–Kim spatial-damping identification method is used in the
presented numerical and experimental case studies. The numerical and experimental results show that
the approach is capable of providing the desired frequency content. This approach can be a valuable tool
for a damping-layout assessment as high damping can be achieved with a reduced amount of damping
material in a single-step solution.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Damping is the dissipation of mechanical energy, mostly in the
form of heat and, to a lesser extent, as acoustic radiation, trans-
mission to coupled dynamic systems or other forms of dissipation
[1]. In structural dynamics, damping, combined with mass and
stiffness, represents the dynamic properties of a structure and is
important for the validation and building of analytical/numerical
models in civil, mechanical and aerospace engineering [2,3]. In
these industries, a number of structures are treated with damping
materials to reduce the amount of structure-borne noise [4], to
decrease vibration levels [1] or to increase fatigue life [5]. The
industrial use of a damping treatment demands its optimization
for reasons such as the cost-effectiveness and the mass loading of
the structure. The result of this optimization approach should be
the configuration of the damping layout with the minimum use of
damping material – in short, its minimum spatial layout.

The standard approach to identifying damping in linear me-
chanical systems is to use one of the following methods: loga-
rithmic decay [6] in the time domain, a continuous wavelet
transform [7], the Morlet wave method [8] or the synchrosqueezed
wavelet [9] in the time-frequency domain, or half-power point [6]
and circle fit [6] in the frequency domain. It is also possible to
evaluate the internal damping using macroscopic constitutive

models [10]. However, these damping-identification methods do
not provide any spatial information (i.e., the damping distribution
throughout the structure).

For spatial damping, direct-damping identification methods
were developed that identify the spatial damping directly from the
frequency response functions (FRFs) without a transformation to
the modal coordinates. Lee and Kim presented the dynamic-stiff-
ness method [11], which identifies the damping separately from
the mass and stiffness based on the imaginary and the real
properties of the FRF. Other spatial-damping identification meth-
ods, not considered in this research, are reviewed in [12–17].

Spatial-damping optimization approaches can be divided into
the experimental and analytical [4]. The experimental approaches
normally use laser vibrometry to map the vibration responses at
several locations. These responses are subsequently examined and
then the damping is applied to selected regions [1]. It is important
to excite the structure over a wide frequency range in order to
identify all the noise and transfer paths [4], which can be a time-
consuming operation. On the other hand, the analytical approach
consists of maximizing the damping or minimizing the structural
responses by changing the numerical/analytical model parameters
within the given constraints. The advantage of the analytical ap-
proach over the experimental approach is that it can be applied
during the early stages of the design, but it is usually calculation-
intensive and requires a detailed structural model (e.g., a large
FEM model). There are a number of less general, spatial-damping
optimization methods that are geometry- or material-specific (e.g.,
for plates [18,23], shells [19], composite materials [20]). General

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2016.07.041
0020-7403/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: miha.boltezar@fs.uni-lj.si (M. Boltežar).

Please cite this article as: Brumat M, et al. Design of damping layout using spatial-damping identification methods. Int. J. Mech. Sci.
(2016), http://dx.doi.org/10.1016/j.ijmecsci.2016.07.041i

International Journal of Mechanical Sciences ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2016.07.041
http://dx.doi.org/10.1016/j.ijmecsci.2016.07.041
http://dx.doi.org/10.1016/j.ijmecsci.2016.07.041
mailto:miha.boltezar@fs.uni-lj.si
http://dx.doi.org/10.1016/j.ijmecsci.2016.07.041
http://dx.doi.org/10.1016/j.ijmecsci.2016.07.041
http://dx.doi.org/10.1016/j.ijmecsci.2016.07.041
http://dx.doi.org/10.1016/j.ijmecsci.2016.07.041


material can be implemented into the FEM-based method [21,22],
but the result is a damping layout of variable thickness fragmented
over the structure that is not very practical to implement.

In contrast to the optimization methods where typically the
mass volume of the damping material is minimized, this research
focuses on damping design for frequency-focused vibration re-
duction. The underlying idea is to use one of the existing spatial-
damping identification methods that gives a straightforward re-
lationship between the frequency responses and the targeted
spatial damping.

This research is organized as follows. The damping-layout de-
sign approach is introduced in Section 2. In Section 3, the theo-
retical background of the Lee-Kim method is briefly presented. In
Section 4, the validation of the approach is illustrated with two
numerical examples and later the performance of the approach is
tested with a real beam experiment. Finally, the conclusions are
drawn in Section 5.

2. Design of damping layout

A frequency-domain design approach is presented here in
which the frequency-response functions (FRFs) are modified and
the resulting changes in amplitudes are estimated using estab-
lished spatial-damping identification methods. Fig. 1 shows the
required steps. The input data is the measured (or synthesized)
FRF matrix ω( )H , after which the modal damping ratios are
changed in the frequency domain to obtain the modified FRF
matrix ω( )HMOD . The spatial-damping identification method is
applied to both FRF matrices to obtain the initial DINIT and mod-
ified DMOD spatial-damping matrices. The difference between the
spatial-damping matrices is the damping layout.

The input data ω( )H can be synthesized from the spatial model
[6]:

⎡⎣ ⎤⎦ω ω( ) = − + ( )
−H K M Di 12 1

where K is the stiffness matrix, M is the mass matrix, D is the
hysteretic damping matrix and ω is the angular frequency. The
second option is to synthesize ω( )H from the modal data. The FRF
matrix is synthesized for each coordinate j and k as the sum over n
modes as [6]:
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where r is the mode number, Aj rr , is the modal constant of the r-th
mode for the matrix coordinates j and k, ωr is the eigenfrequency
of the r-th mode and ηr is the damping ratio of the r-th mode.

After obtaining the initial FRFs, the damping ratios of the se-
lected modes are changed to obtain the desired frequency content,
see Fig. 2. Regardless of the input data (e.g., measured or synthe-
sized) the modal parameters of the initial FRF matrix can be ex-
tracted using experimental modal analysis (EMA) [6]. The mode-
based approach to obtaining the desired frequency content is
preferred because the vibration responses are sensitive to the
damping changes for the frequency range around the resonances
only [1]. From the modified modal parameters (i.e., the damping
ratio changes) the modified FRF matrix is reconstructed with (2).

Finally, the spatial-damping identification method is used to
identify the spatial-damping matrices from both FRF matrices. The
identified spatial-damping matrix is the spatial distribution of the
damping over the structure and the difference between the initial
and modified damping matrices is the required damping layout.

The proposed spatial-damping design approach can be devel-
oped into an iterative one to account for the mass and stiffness

changes of the applied damping treatment [23], but its develop-
ment is beyond the scope of this research.

The Lee–Kim [11] spatial-damping identification method will
be used in the case studies. The method is general and can be
applied to any type of structure; its performance was thoroughly
analysed in [24]. A theoretical presentation of the method is given
next.

3. Spatial-damping identification method

In this section the background of the Lee–Kim [11] direct-
damping identification method for hysteretic damping is briefly
presented. Assuming a linear system and a harmonic excitation/
response, the general, second-order, matrix differential equation
can be written in the frequency domain as [6]:

⎡⎣ ⎤⎦ω ω ω− + ( ) = ( ) ( )X FK M Di 32

From (3), the receptance FRF matrix ω( )H is defined as [6]:

⎡⎣ ⎤⎦ω ω ω ω ω( ) = − + ( ) = ( ) ( ) ( )
−X F FK M D Hi 42 1

and the dynamic stiffness matrix ω( )Z is defined as the matrix
inverse of ω( )H at each frequency point ω:

⎡⎣ ⎤⎦ω ω ω( ) = ( ) = − + ( )−Z H K M Di 51 2

Using (5) the hysteretic damping matrix might be obtained
directly from the imaginary part of the dynamic stiffness matrix

ω( )Z :

ω ω( ( )) = ([ ( )] ) = ( )−Z H Dimag imag , 61

Rearranging (6) to isolate the damping matrix D gives:

ω= ([ ( )] ) ( )−D Himag 71

Method (7) is not limited to hysteretic damping [25].

4. Numerical 5 DoF case study

Fig. 3 represents a 5-degree-of-freedom (DoF) lumped-mass
model that will be used for the initial validation of the proposed
method. Two model properties are defined by the mass =m 5 kg
and the stiffness = ·k 2 10 N/m6 , and are arranged into mass M and
stiffness K matrices. The initial hysteretic spatial-damping values d
of the model are defined as the stiffness-proportional damping [6]
at the matrix level as:

β= ( )D K, 8

where β is the stiffness proportional constant, which was chosen
to be 0.01.

Fig. 1. Proposed damping-layout design approach.
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