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A B S T R A C T

In this paper we present an influence of discontinuous coupling on the dynamics of multistable systems. Our
model consists of two periodically forced oscillators that can interact via soft impacts. The controlling
parameters are the distance between the oscillators and the difference in the phase of the harmonic excitation.
When the distance is large two systems do not collide and a number of different possible solutions can be
observed in both of them. When decreasing of the distance, one can observe some transient impacts and then the
systems settle down on non-impacting attractor. It is shown that with the properly chosen distance and
difference in the phase of the harmonic excitation, the number of possible solutions of the coupled systems can
be reduced. The proposed method is robust and applicable in many different systems.

1. Introduction

The interaction between impacting systems is nowadays extensively
investigated. In many systems such as tooling machines, gear boxes,
heat exchangers and backlash gear the motion of some elements is
limited by a barrier. There are many impact models which give the
relations between the interacting system elements. Generally, they can
be divided into two groups, i.e., the hard and soft impacts [1,2,4,3]. The
hard impacts are modeled by the restitution coefficient [6,7,5]. In this
approach the time of contact is infinitely small and the exchange of
energy is instantaneous. The second approach (soft impact) assumes the
finite, nonzero contact time and a penetration of the base by the
colliding body. Hence, the contact is modeled as a linear [8–10],
Hertzian [11,12] or other nonlinear [13] spring and viscous damper.
The separate equations of motion describe the in-contact and out-of-
contact dynamics.

The numerous works have been devoted to phenomena induced by
the impacts. The bifurcation scenarios and implication of grazing events
are quite well understood [14–17]. There are a few studies which focus
on the systems where impacts between coupled oscillators are transient.
Blazejczyk-Okolewska et al. [18] show that impacting systems can
synchronize (via the exchange of energy during the contact) in anti-
phase on chaotic attractor. The impacts can be considered as a
discontinuous transient coupling which disappears once the interacting
systems reach the synchronous solutions.

The phenomenon of synchronization is commonly encountered in
non-linear systems [19–21]. Generally, in coupled mechanical systems
one can observe two types of synchronous motion, i.e., the complete

and the phase synchronization [22–25]. As the coupling between
mechanical oscillators (two directly interacting bodies or via spring,
damper or inerter) is always bidirectional; when systems are completely
synchronized the value of coupling force is equal to zero, and only if
common motion is perturbed the systems once again start to interact
(note that for non-mechanical systems it is not always true). This is the
straightforward analogy to the above mentioned discontinuous transi-
ent coupling via impacts, where the perturbation of stable non-
impacting solution leads to the appearance of transient impacting
motion (coupling).

In this paper we demonstrate the idea and present solution to reduce
complexity via transient impacts. We consider systems of two identical
oscillators and assume that interaction between them occurs through
soft impacts. When the systems are uncoupled we observe multiple
stable attractors for each subsystem. Using a piecewise transient
coupling to another identical subsystem we can change the number of
stable attractors and, in many cases, specify on which attractor both
systems settle.

The paper is organized as follows. In Section 2 we consider a simple
model which is used to demonstrate the main idea of our approach and
define the notations introduced to describe existing periodic states. In
the next section we present and describe the how via discontinuous
coupling we can decrease number of solutions in the complex systems
with many co-existing periodic solutions of different type. The possible
coexistence of impacting and non-impacting solutions is discussed in
Section 4. Finally, in Section 5 the conclusions are given.
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2. Duffing systems

In this section we show the main idea of our approach using a
simple example. First, the considered model is introduced and the
notations used to classify the existing solutions are defined. Then, we
present the results of the numerical analysis.

2.1. Model of the system

The system considered in this subsection consists of two identical
Duffing oscillators shown in Fig. 1. Oscillators in their steady states (at
rest) are separated by the distance d, and the impacts which could occur
between them are of the soft type due to the presence of a spring with
stiffness kc and a viscous damper with damping coefficient cc. Two
Duffing oscillators have masses M each and are damped by viscous
dampers with damping coefficient c. The spring connecting each
oscillator to the wall is nonlinear and of hardening type, where both
stiffness coefficients are positive: k > 01 and k > 02 . Both Duffing
systems are driven by harmonic forces with the amplitude F and the
frequency ω but there is a phase shift between these forces. Forcing of
the first oscillator has fixed phase (equal to zero) while for the second
one there is a phase shift φ which is used as a control parameter
(φ π∈ 0, 2 )).

The whole system is described by the following equations of motion:

Mx k x k x cx F F ωt¨ + + + ˙ + = sin( )C1 1 1 2 1
3

1 (1)

Mx k x k x cx F F ωt φ¨ + + + ˙ − = sin( + )C2 1 2 2 2
3

2 (2)

where FC describes the forces generated by the discontinuous coupling
and is given by the formula:
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The values of the parameters are as follows: M = 1.0 [kg], k = 1.0 [ ]1
N
m ,

k = 0.01 [ ]2
N
m3 , c = 0.05 [ ]Ns

m , F = 1.0 [N], ω = 1.3 [ ]1
s , k = 8.0 [ ]c

N
m ,

c = 10.0 [ ]c
N
m . Distance between system d and phase shift in excitation

φ are controlling parameters. Introducing dimensionless time τ tω= 1,
where ω = 1 [ ]1

1
s , reference length l = 1.0 [m]r and mass m = 1 [kg]r we

transform the equations (1)–(3) into dimensionless form in which
dimensional parameters are replaced by the following non-dimensional
parameters:
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We perform transformation to the dimensionless form in the way that
enables to hold the values of parameters, hence: M′ = 1.0, k′ = 1.01 ,
k′ = 0.012 , c′ = 0.05, F′ = 1.0, ω′ = 1.3, k′ = 8.0c , c′ = 10.0c . For simpli-
city all of the primes used in definitions of dimensionless parameters
will be omitted hereafter in the analysis.

2.2. Notations for the periodic solutions

We introduce the notations that enable to describe all periodic states
of two impacting oscillators, hence we can classify all solutions that can
occur in the considered system. To recall, we assume that the left (first)
system is a reference system, hence its phase of excitation and position
are fixed while for the right (second) system the phase of excitation φ
can vary in the range form 0 to π2 and the oscillator's position can be
changed to decrease or increase the distance d. The solution of the left
oscillator is described in the following way:

Lpl
nl

where: nl is the number of the attractor (in case of multiple attractors of
isolated oscillator) and pl is the period of given attractor in respect to
the period of excitation (we assume that solutions are periodic).
Similarly, the solution of the right oscillator is given by:

Rpr
nr

where: nr is the number of the attractor (in case of multiple attractors of
isolated oscillator), pr is the period of given attractor. To define the
solution of the interacting oscillators system we will use the following
notations:

L R .pl
nl

pr s
nr

−

where s is the shift in phase between the systems given by an integer
number when the period of solution is longer than the period of
excitation i.e, s=1 for π2 shift and so on.

The best example to describe the importance of s is a case when we
have two identical systems both with the same period-2 solution (i.e.
their response periods are twice longer than the period of excitation). In
Poincaré map, for both systems, we observe two dots. Let's assume that
the position of the first oscillator, at the sampling moment of time, is in
one of the dots. Then, the second oscillator can be either in the same
position (s=0) or in the second dot when its phase is shifted by one
period of excitation (s=1). Number of possible shifts is equal to the
greatest common divisor (gcd) of both systems solutions' periods. Let us
now consider an example where both oscillators have period-2 and
period-5 co-existing solutions. If the first oscillator is on period-2
solution and the second one is on period-5 solution only one config-
uration is possible because gcd(2, 5) = 1, so we have one possible value
of s=0. In the other case where both oscillators have period-4 and
period-6 co-existing solutions, the gcd(4, 6) = 2, hence s=0 or s=1.

Fig. 2 demonstrates these examples. In Fig. 2(a) we show possible
configuration for systems with periods 2 and 5. In this case the period of
the whole system is equal to 10. The upper row shows the sequence of
possible positions of the system with period 2 (1st or 2nd dot on
Poincare map), while the lower row presents the possible positions of
the system with period 5 (1st to 5th dot on Poincare map). It is easy to

Fig. 1. Model of two discontinuously coupled Duffing oscillators.

Fig. 2. The possible combinations of the system states for (a) period-2 and period-5
solutions and (b) period-4 and period-6.
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