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A B S T R A C T

The extended layerwise method (XLWM) was established in the previous studies [1,2] for the laminated
composites with multiple delaminations and transverse crack based on the layerwise theory and extended finite
element method (XFEM). In order to improve convergence rate, Wilson's incompatible freedom is introduced
into the in-plane displacement discretization of the XLWM, and an incompatible extended layerwise method
(IXLWM) is established for the laminated composite shells in this paper. The finite formulation of IXLWM is
deduced from Hamilton's principle for composite shells with delamination and/or transverse crack. In the
numerical examples, the composite beams, plates and spherical shells are used to validate the proposed IXLWM
and investigate its convergence rate for the static responses and stress intensive factor (SIF). In addition, the
influence of incompatible freedom in different directions on the convergence rate is studied.

1. Introduction

The extended finite element method (XFEM) [3–5] has widely
applied to solve the problems that exhibit strong and weak disconti-
nuities in material and geometric behavior, especially for the moving
discontinuous problems, as it enables the geometric and materials
discontinuity to be independent on the meshing. The applications of
XFEM were mainly in elastic crack growths [3,4,6,7], cohesive crack
propagation [8], dynamic crack propagation [9–12], bimaterial inter-
face crack [7,13], two-phase flows [14,15] and so on. Recently, the
XFEM was applied to simulate the fracture problems of the isotropic
and composite plates, such as the delaminations [16–22] and trans-
verse crack [23,24,10,9,25–32]. The XFEM was also applied to
simulate delamination and transverse crack growth coupled with the
virtual crack closure technique (VCCT) [33,34] or cohesive zone model
(CZM) [35–38].

The shell elements method improved by the XFEM were applied to
simulate the thick-through cracks or delaminations individually for the
laminated composite structures, but there was no work has yet been
reported for the typical damage pattern including two kinds of cracks
simultaneously. However, the typical damage pattern of composite
laminated structures introduced by low-speed impact is a complex
three-dimensional crack with layered characteristics. Since it is very
difficult to apply XFEM directly to deal with complex three-dimen-
sional crack, the complex three-dimensional crack with layered char-
acteristics can be converted into two two-dimensional crack (delami-
nations and transverse cracks) by using an appropriate displacements

model along thickness direction. In order to simulate the delamination
and transverse crack simultaneously, a extended layerwise method
(XLWM) was developed for the laminated composite beams, plates and
shells by the layerwise method and extended finite element method
(XFEM) in our previous studies [1,2]. The XLWM of laminated
composites can not only perfectly describe the multiple delaminations
together with the thick through or non-thick through transverse cracks,
but also accurately calculate the displacement and stress fields of the
transverse crack tips and delamination front. Because the XLWM is
quasi-3D and the transverse cracks of each single layer are indepen-
dently described, the distribution of the stress intensity factor (SIF)
along the thickness direction can be calculated, and the predicted crack
growth angle is different for each mathematic layer. This serves an
important advantage compared with the existing shell elements
enriched by the XFEM. The XLWM expanded the application of the
XFEM in the fracture analysis and prediction of laminated composite
structures.

Although the unprecedentedly success of XFEM in approximating
the singular field around the crack tip independent of the meshing, it
still has been long hindered in engineering applications. As a result,
numerous efforts have been made to obtain a improved XFEM. In
general, they involve modification on original enrichments [13,39],
higher-order enrichments or elements in substitution for original ones
[40,41] and combination with subsistent numerical techniques [42,43].
Liu et al. [13] improved the XFEM by enriching the nodes surrounding
the crack tip with the first term and higher order terms of the crack tip
asymptotic field. Tian and Wen [39] developed an improved XFEM
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(iXFEM) by a globally interpolating approximation based on local
least-squares fitting to overcome three difficulties of the existing
XFEM: 1) to eliminate the linear dependence and the ill-conditioning
issues; 2) to get rid of extra dofs in crack tip enrichment to facilitate
optimal mass lumping in dynamic analyses; 3) to be interpolating at
enriched nodes to enable direct essential/contact boundary treatments.
Iarve [40] modified the XFEM by replacing the step function with a
polynomial B-spline approximation functions. The implementation of
this method only involves integration of the products of original shape
functions and their derivatives without modification of the integration
domains. Zamani et al. [41] used higher order terms of the thermo-
elastic asymptotic crack tip fields to enrich the approximation space of
the temperature and displacement fields in the vicinity of crack tips.
The improved accuracy is obtained in this method and the benefit of
including such terms is greater for thermal-elastic problems than for
either purely elastic or steady state heat transfer problems.
Menouillard and Belytschko et. al [42] improved the accuracy of
XFEM by using the meshfree approximation as an enrichment in a
cluster of nodes about the crack tip. Yu and Liu [43] enhanced the
implementation of XFEM for stress analysis around cracks by coupling
the generalized finite element method (GFEM) and XFEM. The
generalized node are used in a cluster of nodes around the cracks,
while the conventional finite element are employed at nodes without
cracks, so the cost is reduced and the accuracy of stresses in the vicinity
of the cracks is also improved.

The most efforts of the existing improved XFEM concentrate on the
enrichment functions and the improvement is limited in local enriched
domain. And they do not take the other effects of the crack on the
global computational domain into consideration. Actually, in addition
to the discontinuity and the singularity of crack, there is also a
neglected situation that the occurrence of cracks may lead to additional
bending. The performance of isoparametric finite elements employed
as basic elements by the XFEM are not well satisfied for bending
modes, even though the bending is independent of the cracks.
Furthermore, the mode II cracking subjected by the out-plane loads
should be not well approximated by the linear element currently used
in existing XFEM.

Although our previous works about XLWM had solving some
restrictive obstacles of applying XFEM to the typical damage pattern
of composite laminated plates, there are two weaknesses need to be
conquered in the next investigations. One of the weaknesses is that only
the Heaviside function is applied to the delamination in the existing
XLWM, it means that the delamination is simulated by the node pairs.
The delamination front has to consistent with the element edges, so the
delamination region is depended on the finite elements and the front is
approximated by the short straight lines (element edges). Furthermore,
the general delamination damage region usually detected by the
nondestructive evaluation (NDE) in the engineering applications, the
extremely complex shape of the crack front should result into the
modeling and analysis difficult in the XLWM. The other weakness is
that the XFEM employed in XLWM to simulate the transverse crack is
traditional methods for the orthotropic materials, for example, the
optimal convergence rates does not be guaranteed. In our previous
works, the refine mesh is needed for the composite plates with
damages, especially the region nearby the delamination front and
transverse crack tips.

In 1973, Wilson [44] proposed the incompatible element which
introduces extra displacement modes at the element level. Although
these extra displacement modes violate inter element compatibility, the
accuracy and convergence of these elements in modeling bending
modes is effectively improved. In the proposed study, the Wilson's
incompatible freedoms are introduced into the in-plane displacement
discretization of the XLWM to improve its convergence rate, and an
incompatible extended layerwise method (IXLWM) is established for
the laminated composite shells with multiple delaminations and/or
transverse crack. The remainder of this article is organized as follows:

Section 2 presents a briefly introduction of the XLWM for the
composite shells, including the displacement fields in the thickness
direction, Hamilton principle and finite element formulations. Section
3 presents the mathematic formulations of the IXLWM for the
composite shells with multiple delaminations from the Hamilton's
principle and the in-plane displacement discretization with Wilson
incompatible freedoms, and it is extended to the composite shells with
multiple delamination and transverse crack in Section 4. Several
numerical examples are carried out in Section 5 for the composite
beams, plates and shells. The proposed IXLWM is validated by the
XLWM and 3D elastic model. The convergence rate of the proposed
IXLWM is compared with that of the XLWM for the static responses
and SIF. The influence of the incompatible freedoms in different
directions on the convergence rate of IXLWM is investigated. Finally,
some remarkable conclusions are drawn in Section 6.

2. A brief review of XLWM

The displacement field of the XLWM in the thickness direction is
constructed with the linear Lagrange interpolation functions, the one-
dimensional (1D) weak discontinuous function and strong discontin-
uous function. The strong and weak discontinuous functions are
applied in the displacement field along the thickness direction to
model the displacement discontinuity induced by the delaminations
and strain discontinuity induced by the interface between the layers,
respectively. The transverse cracks are simulated in the in-plane
displacement discretization based on the XFEM. In order to model
the displacement discontinuity of delaminations based on the strong
discontinuity functions in the layerwise theory, the nodes of the
displacements field along the thickness direction should be located at
the top surface, the bottom surface and the middle surface of each
single layer. This node strategy is also necessary for the simulation of
in-plane transverse cracks. However, the weak discontinuity function is
needed in this displacements field to model the strain discontinuity
resulted from the interfaces between the layers, and to meet the C0-
continuity of the displacement field.

In the XLWM, the displacements at point (ξ, ϑ, ς) in the laminated
composite shells with multiple delaminations can be expressed as

u ξ ς t Φ ς u ξ t ζ i l r( , ϑ, , ) = ( ) ( , ϑ, ), = , ,α ζk αζk (1)

where α = 1, 2, 3 denotes the components in the ξ,ϑ and ς directions.
uαik , uαlk and uαrk are the nodal freedom, the additional nodal freedom to
model displacements discontinuity induced by delaminations and the
additional nodal freedom to model strains discontinuity induced by
interface between the layers, respectively. k represents the nodes in the
thickness direction. The subscripts i, l and r denote the standard nodal
freedom, the additional nodal freedom for delaminations and the
additional nodal freedom for interfaces, respectively. Φ ϕ ς= ( )ik k , and
ϕk is the linear Lagrange interpolation functions along the thickness
direction of the laminated composite shell. Φ Θ ς= ( )rk k , and
Θ ϕ ς χ ς= ( ) ( )k k k is the weak discontinuity shape function used to model
the strains discontinuity in the interface between the layers, where
χ ς( )k is the one-dimensional signed distance function. Φ Ξ ς= ( )lk k , and
Ξ ϕ ς H ς= ( ) ( )k k k is the shape function used to model delaminations,
where H ς( )k is the one-dimensional Heaviside function. N is the
number of the mathematical layers of the composite shells.

The present layerwise concept is very general in that the number of
subdivisions (mathematical layers) can be greater than, equal to or less
than the number of the material layers through the thickness direction.
A mathematical layer is represented as an equivalent, single and
homogeneous layer. If there are continuous and uniform stacking
sequences in composite laminated structures, the computational cost of
the layerwise theories can be reduced significantly by using the
sublaminate concept which makes the number of mathematical layers
much less than the number of the material layers. The numbers of the
standard freedoms and the additional freedoms for interfaces are N + 2
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