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ARTICLE INFO ABSTRACT

Buckling of the rectangular thin plates is a class of problems of fundamental importance in mechanical engineering.
Although various theoretical and numerical approaches have been developed, benchmark analytic solutions are still
rare due to the mathematical difficulty in solving the complex boundary value problems of the governing high-order
partial differential equation. Actually, most available solutions can be categorized as either “accurate” for the plates
with two opposite edges simply supported or “approximate” for those without two opposite edges simply supported.
In this paper, we present the first work on the symplectic superposition method-based analytic buckling solutions of
the rectangular thin plates. A Hamiltonian system-based variational principle via the Lagrangian multiplier method
is proposed to formulate the thin plate buckling in the symplectic space. Then the governing equation is analytically
solved for some fundamental subproblems which are superposed to yield the final solutions of the original problems.
For each problem, a set of equations are produced with respect to the expansion coefficients of the quantities
imposed on the plate edges. The existence of the nontrivial solutions of the equations sets the requirement that the
determinant of the coefficient matrix be zero, which leads to a transcendental equation with respect to the buckling
loads. The buckling mode shapes are obtained by substituting the nontrivial coefficient solutions into the mode
shape solutions of the subproblems, followed by superposition. Four types of buckling problems are studied for the
plates with combinations of clamped and simply supported edges, without two opposite edges simply supported. The
developed method as well as the accurate analytic results is well validated by the finite element method and very few
analytic results from the literature.
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1. Introduction

The buckling problems of thin plates have attracted continuous
attention over the past decades due to their fundamental importance in
the field of mechanical engineering. It is well known that many effective
numerical methods have been developed for the problems, such as the
classic finite element method (FEM), boundary element method, finite
difference method, finite strip method, Galerkin method, Rayleigh-Ritz
method [1-3], and the modern differential quadrature method [4-7],
discrete singular convolution method [8-11], meshless method [12],
digital image correlation method [13] and asymptotic method [14]. These
methods can normally meet the engineering requirements with acceptable
errors; thus they have found vary broad applications in practice. However,
accurate analytic solutions are still essential since they could be regarded
as the benchmarks for validation of various approximate or numerical
methods. Moreover, the accurate analytic solutions are indispensable for
some specific issues such as quick prediction of the mechanical behavior
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and rapid parameter optimization.

In view of the above situation, the present work is aimed to explore the
analytic buckling solutions of the rectangular thin plates. In seeking such
solutions, one traditionally tries different ways to directly solve the fourth-
order partial differential equation (PDE) with respect to the single
governing variable, i.e. the deflection of the buckled plate. Any solution
approaches within this framework are implemented in the default
Euclidean space, and the solutions are often taken in certain forms such
as the monomials, polynomials or series, in which the unknown coefficients
or constants are determined by letting the solutions satisfy the PDE as well
as the associated boundary conditions as much as possible. However, for
the rectangular plates without two opposite edges simply supported, it is
extremely hard, if not impossible, to find the accurate analytic solutions
because the method of separation of variables is invalid for these cases.
Nonetheless, continuous efforts are made in recent years on the theoretical
analysis of plate buckling, some of which are reviewed here for a better
knowledge of the developments in the area. Liew et al. [15] investigated the
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buckling behavior of rectangular Mindlin plates having two parallel edges
simply supported by applying the concept of state space to the Lévy-type
solution method to obtain the closed-form critical loads from the governing
differential equations. A similar approach was adopted by Xiang et al. [16]
to study rectangular thin plates with the same boundary conditions
subjected to both intermediate and end uniaxial loads. Gorman [17]
employed the semi-inverse superposition method to obtain the buckling
loads for a family of elastically supported rectangular plates subjected to
one-directional uniform in-plane loading. Kang and Leissa [18] formulated
an exact solution procedure for the buckling analysis of rectangular plates
having two opposite edges simply supported when these edges were
subjected to linearly varying normal stresses, where the power series
method (i.e., the method of Frobenius) was applied. Jana and Bhaskar [19]
developed a rigorous superposition approach for plane stress analysis of the
loaded simply supported rectangular plate, and the resulting non-uniform
in-plane stress field was fully accounted for in the subsequent stability
analysis which was based on the Galerkin's approach with a complete set of
admissible functions. A semi-analytical approach based on the variational
principal of total energy minimization and the iterative extended
Kantorovich method for the buckling analysis of symmetrically laminated
rectangular plates with general boundary conditions was presented by
Shufrin et al. [20]. Liu and Pavlovi¢ [21] proposed an analytical approach
for the elastic stability of simply supported rectangular plates under
arbitrary external loads through the use of exact solutions for the in-plane
stresses and the adoption of double Fourier series for the buckled profiles in
the Ritz energy technique. The same approach was later extended by
Mijuskovi¢ et al. [22] to plates with different boundary conditions under
arbitrary in-plane compression loads. Ruocco and Fraldi [23] developed an
analytic approach for the buckling analysis of rectangular plates under
mixed boundary conditions, where the displacement was assumed to be the
scalar product of a vector containing four prescribed functions, responsible
for the behavior of the plate in one direction, and a vector of four unknown
functions depending on the variable in another direction. Thai and Choi
[24] obtained the Lévy-type solutions for rectangular plates with two
opposite edges simply supported and the other two edges having arbitrary
boundary conditions based on two variable refined plate theory. Khorshidi
and Fallah [25] applied the Navier method to investigate the buckling of
simply supported functionally graded nano-plates based on the exponential
shear deformation theory and nonlocal elasticity theory. Li et al. [26]
employed a transfer function method to study the initial buckling behavior
of thin plates with different boundary conditions resting on tensionless
elastic or rigid foundations.

It should be noted that, although various theoretical approaches have
been developed, accurate analytic solutions are still rare due to the
mathematical difficulty in handling the complex boundary value problems
of the governing high-order PDE. An alternative novel solution approach is
the symplectic approach [27-32]. It is carried out in the symplectic space
rather than in the Euclidean space, where the governing equation is a
matrix equation, with a state vector containing multiple variables to be
solved. In the symplectic space, some analytic solutions can be achieved by
the separation of variables and symplectic eigen expansion. With a proper
extension of the symplectic approach, a symplectic superposition method
has been developed in recent years to analytically treat both the bending
and vibration problems of rectangular plates [33-38]. The method
combines the advantages of the symplectic approach and the superposition
technique such that the analytic solutions can be obtained in a rational way
without predetermining any forms, and the solution procedure is generally
applicable to various commonly used boundary conditions such as clamped,
free, simply supported and slidingly clamped (also known as “guided”)
conditions. However, it must be emphasized that the symplectic super-
position method for plate buckling problems was not developed.

In the following, we present the first work on the symplectic super-
position method-based analytic buckling solutions of the rectangular thin
plates. We first formulate the thin plate buckling in the symplectic space by
a Hamiltonian system-based variational principle via the Lagrangian
multiplier method. Then the obtained governing equation is analytically
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solved for some fundamental cases which constitute the subproblems to be
superposed to yield the final solutions of the original problems. For each
problem, a set of equations will be produced with respect to the expansion
coefficients of the quantities imposed on the plate edges. The existence of
the nontrivial solutions of the equations sets the requirement that the
determinant of the coefficient matrix be zero, which leads to a transcen-
dental equation with respect to the buckling loads. The buckling mode
shapes are obtained by substituting the nontrivial coefficient solutions into
the mode shape solutions of the subproblems, followed by superposition.

For the sake of convenience, we focus on the rectangular plates with
combinations of clamped and simply supported edges, and the plates
with two opposite edges simply supported are not under consideration
because they can be solved analytically using the classical Lévy-type
semi-inverse method. Accordingly, the plates with three types of
boundary conditions are investigated, i.e. the fully clamped plates
(CCCC), plates with one edge simply supported and the other edges
clamped (CCCS), and plates with two adjacent edges clamped and the
other edges simply supported (CCSS), where C denotes a clamped edge,
S a simply supported edge, and the boundary conditions are specified
in a clockwise sense. The uniaxial uniform in-plane loads are applied
either at one pair of opposite edges or at another pair; thus a CCCS
plate can be loaded in two ways, one with the loads applied at the two
opposite clamped edges, and another one with the loads applied at the
simply supported edge and its opposite clamped edge. Consequently,
there are four types of problems to be studied in this paper.

2. Governing equation in the symplectic space for buckling of
a thin plate

The Hellinger-Reissner variational principle for buckling of a thin
plate within the domain £ in the rectangular coordinate system (x, y),
ignoring the boundary conditions, is [34]

2 2 2
5HH—R=5/] _Mz)_w_ZMXya_w_Mv()_w
Q ox? oxady 7 oy?

1
2D(1 — 1?)

2 2
T ol o
2Lote e oA 0y W

where the functional 77y_y is the generalized potential energy, w is the
out-of-plane deflection of the plate, M, and M, are the bending
moments, M,, is the twisting moment, D is the flexural stiffness, v is
the Poisson's ratio, N; and N, are the normal membrane forces, N,, is
the shearing membrane force. The variational Eq. (1) yields the
equilibrium equations as well as the relations between the internal
forces and the deflection, two of which are
M, = =D (0*w/ox* + vo*wloy*) and M,, = —D(1 — v)0*w/oxdy. To form
the Hamiltonian system-based variational principle, we eliminate M,
and M,, by substituting the above two relations into Eq. (1), and
introduce two new quantities, 7 and 6, via a term T (6 — ow/dy), where
T is a Lagrangian multiplier. IIy_g is thus reformulated as II:
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Assuming constant normal membrane forces and zero shearing
membrane force for convenience, the new variational equation 6/T; = 0
gives

0Z/dy = HZ, 3)
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