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A B S T R A C T

Noise is present in a wide variety of engineering systems, and it can play a significant role in influencing system
dynamics. Under the influence of noise, it has been shown that the response of many discrete-time dynamical
systems can be moved away from a particular region. In the present study, the partial control scheme constructed
for a chaotic system is applied for confining the trajectories inside a particular region despite the presence of
white noise. The proposed algorithm is independent of the dimension of the system. As an illustration, the partial
control method has been applied to restrict the response of a Duffing oscillator to a certain state-space region.
Different noise forms are considered and numerical results are presented to illustrate the effectiveness of this
control method.

1. Introduction

In recent years, the effects of noise on the response of a Duffing
oscillator have received considerable attention (e.g., [1–4]). Generally
speaking, one considers noise as being undesirable for the performance
of an engineering system. Chaotic motions of a system may also not be
preferrable and various means have been used to control these motions.
The proceedings of a IUTAM meeting organized by Professors Rega and
Vestroni serves as a rich example [5]. Aperiodic behavior can play a
significant role in influencing system dynamics, as observed in the
context of several systems; for example, avoidance of undesired
resonances in mechanical systems and enhancement of the efficiency
of a thermal pulse combustor are some applications where chaos can be
beneficial [6,7]. There are also other no-mechanical systems such as
biological systems, in which chaotic behavior can play an important
role. In living organisms, chaotic dynamics has been stated to be
important for some vital functions [8]. It has been noted that preserving
chaos is of potential relevance to biological disorders [9].

There are certain situations in which a system's trajectory has
characteristics of chaotic behavior for a finite duration of time, before
the trajectory escapes to another state that could correspond to a
periodic attractor or another state. Sometimes, this end state could be
undesirable. This type of behavior is often described as transient chaos.
An important example of this kind of behavior is undesired tumor
growth [10].

Maintaining chaotic behavior in systems in the presence of an

external disturbance can be desirable and important for the dynamics of
the considered system. This has motivated studies and efforts on
different control techniques, such as the partial control method [11–
13]. These methods have been designed for application to deterministic
systems with bounded noise [14]. The presence of even a low level of
noise can radically change the dynamics of a chaotic system, as these
perturbations can experience exponential growth.

In the method proposed by Sabuco et al. [12], the property of
transient chaos is used. The goal is to keep the trajectory inside a
particular region without moving towards any attractor. The method
has been shown to be effective, and one can use this method to control
the trajectory by using an upper bound on the control u0 that is less than
the upper bound on the disturbance ξ0. This control method has been
applied to several dynamical systems, including the Hénon map,
Duffing oscillator, and other systems in the context of ecology and
cancer [10,15]. In all of the previous use of partial control methods, a
bounded representation of noise has been used. To date, the control of
trajectories of a system in the presence of white noise has not been
studied. This is addressed in this work and the development of the
partial control method in the presence of a white noise disturbance
represents a fundamental difference between this study and the
previous studies on partial control reported in the literature.

The rest of this paper is organized as follows. In Section 2, the
authors describe the concept of a safe set, the Sculpting Algorithm for
computing a safe set, and the partial control method for a system with
white noise by using the Euler-Maruyama integration method. In
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Section 3, an application of this method to the response of a Duffing
oscillator is considered. In particular, parameters for which this system
experiences a transient chaotic behavior are considered. In Section 4,
comparisons are made between the cases with white noise and bounded
noise. Concluding remarks are collected together and presented in
Section 5.

2. Partial control in the presence of white noise

2.1. Escaping trajectories

Let f be a continuous map of phase space; then, one can write

q f q= ( ),n n+1 (1)

where the trajectory at n( + 1) th step is mapped to the nth step. In
nonlinear systems, for a given choice of parameters, the trajectories
may exhibit chaotic behavior for a while before eventually leaving that
particular region or reaching a stable periodic state. As previously
mentioned, this behavior is referred to as “transient chaotic” behavior,
and the topological structure inside region Q associated with transient
chaotic behavior is a zero-measure set known as a chaotic saddle
[16,17].

In various practical applications, due to external disturbances,
trajectories typically rapidly leave the region of the phase space where
transient chaos occurs. To model this, the authors consider that there is
a white noise component σW t˙ ( ) that causes the trajectory qn to leave
the region Q, where by leaving a region, the authors mean that the
trajectory is leaving that particular region Q, or it converges towards a
fixed point or an attractor that one does not consider to be part of that
particular region Q. In equation form, the relevant map can be written
as

q f q ξ= ( ) + .n n n+1 (2)

Here, qn is the state at step n, f is a function with chaotic transient in Q,
and ξn is the noise input. The noise input to the system is represented by
σW t˙ ( ), where σ represents noise amplitude, W(t) represents the Wiener
process and W t˙ ( ) is the associated derivative of Brownian motion. The
authors' goal is to choose a control un such that for the partially
controlled trajectories governed by

q f q ξ u= ( ) + + ,n n n n+1 (3)

one can guarantee that the qn remain in region Q for an appropriate
choice of control un with an upper bound of u0. The authors refer to un
as feedback control that can be chosen with the knowledge of white
noise component σW t˙ ( ) and f q( )n , or in particular f q ξ( ) +n n. Therefore,
the goal is to find an appropriate feedback control un which is a
function of f q ξ( ) +n n, and is bounded by u0. It is also worth noting that
the applied control un is a discrete control input. To apply this control
method to a continuous dynamical system, one has to consider a
discretized state of the system. This is usually done by constructing a
Poincaré section for autonomous systems, or a stroboscopic map for
nonautonomous systems such as forced oscillators. With this discretiza-
tion, the control input required by the partial control method un is only
applied discretely at regular intervals of time (when stroboscopic maps
are used) or when the trajectory crosses the defined Poincaré section. At
any other instant, the system is allowed to evolve freely, without any
kind of control.

In the present work, the following assumptions are made:

1. The region Q is a closed and bounded region in the phase space.
2. The applied feedback control un in phase space has an upper bound

u0, which means that it satisfies u u| | ≤n 0. Such control un is called
“admissible control”. Here, only admissible control is considered.

3. The bound on the control u0 depends on the noise amplitude σ.

Here, a safe set S is defined as the set of points in a bounded region,

satisfying the following:

1. A safe set S is a subset of Q; that is, S Q⊂ .
2. For each point qn in phase space S (q S∈n ), the distance of

f q ξ( ) +n n from S is at most u0. This implies that there exists an
admissible control value un which has an upper bound u0, such that
f q ξ u( ) + +n n n is in S, or f q ξ u S( ) + + ∈n n n . A safe set is decided
by the white noise amplitude σ and control bound u0.

By applying admissible control, it is possible to keep the entire
trajectory qn of Eq. (3) in S and hence in Q. Then, if q is in a safe set
S Q⊂ , the trajectories can be controlled to stay in S and consequently in
Q by choosing the control un so that qn+1 is in S. For a bounded
disturbance, wherein the disturbance ξn is bounded by ξ0, the trajec-
tories are allowed to be remain inside a region Q even when the upper
bound of the control u0 is smaller than the upper bound of the
disturbance ξ0 [12]. In prior work, safe sets have only been found for
one-dimensional and two-dimensional maps for bounded noise values
of ξ ξ≤n 0 [12,18].

In the current study, while applying the partial control method, a
grid of points is used for the close bounded region Q that needs to be
controlled, and the largest safe set S is found.

2.2. Form of safe sets

Over the last few years, researchers have considered cases with
bounded noise and found safe sets for these cases [12,18]. The
algorithm for finding a safe set for a bounded noise is available, and
it is known that the shape of a safe set can be geometrically more
complicated than expected [12].

In the present work, the authors have followed the steps used by
Sabuco et al. [12]. However, the authors have had to change the
numerical integration scheme, since the authors have considered white
Gaussian noise instead of bounded noise.

In the prior section, the authors mentioned important properties of a
point belonging to a safe set. These properties will be used to develop
the algorithm to compute safe sets by using a recursive algorithm. The
algorithm is based on the Euler-Maruyama integration scheme and it
can be used to find a safe set whenever there is a chaotic saddle in the
region Q. The algorithm has been demonstrated on a Duffing oscillator
that shows the Wada property which arises in the phase space for all the
basins of attraction [19]. There also exist fixed points and periodic
attractors inside the region Q, and almost all trajectories eventually are
attracted to one of the fixed points or periodic attractors, as it is
expected for cases with transient chaos.

2.3. Sculpting algorithm for computing largest set

Consider a closed bounded region Q represented by a set of grid
points that has to be controlled. Again, the trajectory of any point q in Q
without any disturbance is given by

q f q= ( ).n n+1 (4)

The trajectories are associated with transient chaotic behavior. The
application of a white Gaussian noise σW t˙ ( ) is represented as

q f q σdW= ( ) + .n n+1 (5)

Given the closed bounded set Q and upper bound of control u0, it is
declared that a point q in Q “unsafe” (for Q) under the influence of
white noise σW t˙ ( ) if the distance of f q σdW( ) +n from region Q is more
than the upper bound of the control u0, and such f q σdW( ) +n has no
admissible control u for which f q σdW u( ) + +n is in Q. Then, the
authors define the sculpting operation Υ that results in the removal of
the unsafe points from Q. This implies that Υ Q( ) is the set of safe points
in Q after removal of the unsafe points.

The authors start by considering a grid of points in a close bounded
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