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The behaviour of a space-modulated, so-called “argumental” oscillator, is studied. The oscillator is submitted to
an external harmonic force, which is amplitude-modulated by the oscillator's position in space. An analytic
expression of a stability criterion is given. Using the averaging method, an integrating factor and a Van der Pol
representation in the (amplitude, phase)-space, an exact implicit analytic solution is given when there is no
damping, and an approximate implicit analytic solution is given when there is damping, allowing the plotting of
the separatrix curve. An attractor is identified.

1. Introduction

In the 1920s, physicists were searching for a device to divide the
mains current frequency in order to manufacture mains-driven clocks.
As no electronics were available, they studied various inherently
frequency-dividing oscillators. Among them was a pendulum designed
by Béthenod in 1929 [1], that oscillated at a low frequency, typically
1 Hz, when driven by the mains at 50 Hz. Béthenod's pendulum was
fitted with a steel sphere at the tip of the rod. The force, which could
only be attractive, was due to a magnetic field created by a solenoid
with vertical axis, carrying an alternating current. The sphere could
sense this force only when it was near the lower equilibrium position of
the pendulum. Thus, there was a spatial modulation of the force.

An oscillator subjected to a spatially-localized external harmonic
force is presented in [2], where the term “argumental oscillations” is
coined from the fact that the interaction between the oscillator and the
excitation depends on the “argument” of a space-localization function,
which is called the H-function hereinafter.

A pendulum fitted with a permanent magnet at the tip of the rod,
which can sense the external electromagnetic force only when it is near
a coil located at the lower equilibrium position, is presented in [3].
Here the force can be both attractive or repulsive. A model of the spatial
localization of the interaction is built, and mathematical elements
regarding the system are given.

Argumental oscillations are presented in [4]. An electronic argu-
mental oscillator with a II function used as dependent-variable
localization function is presented in [5].
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Modeling and experimental results about six argumental oscillators
are given in [6]. Capture probability by an attractor in argumental
oscillators is studied in [7].

A system with a second-order equation exhibiting a cubic and a
quadratic nonlinearities with an excitation frequency two or three times
the system's natural frequency is studied in [8].

The purpose of this article is to study symbolically some aspects of
the argumental oscillators, namely a stability criterion and an approx-
imate implicit equation of the integral curves, to be able to draw
separatrix lines and assess some areas around the attractors in the
(amplitude, phase)-space.

2. Canonical second-order equation of motion

To simplify the expression of the system behaviour, the reduced
time 7 = w,t is classically introduced, where wy is the natural angular
frequency of the oscillator. Using from now on the dot notation to refer
to the derivatives with respect to z, we shall distinguish three types of
oscillator, which we call “Type A”, “Type B1” and “Type B2”. The
general second-order equation of motion for these oscillators is:

@ + 2fa + a + pa® = AH(a)E(r) @

where f3 is the dissipation coefficient, i is the Duffing coefficient, A is a
constant, H is a function of a, and E(z) is a periodic function of time 7,
with frequency components located above the oscillator's fundamental
frequency.

With v being the angular frequency of the external excitation:
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® For Type A oscillators, H is an odd function of @, and E is the
function Siﬂz(LT].
()
® For Type B oscillators, H is an even function of @, and E is the

function sin(ir].
o

An example of a Type-A H-function is

H() = —2

A+ ya®y @
where v is a constant.
An example of a Type-B H-function is
H(a) =11 (1),
2h 3

where h is a constant, and II denotes the Pi function, i.e. [1(x) = 1 if
Ixl < % and I1(x) = 0 otherwise. In this paper, this example is called a
Type B1 oscillator.

Another example of a Type-B H-function is

H(@) = —"%
@ = Ty

@
with y being a constant. In this paper, this example is called a Type B2
oscillator.

The “Type A” oscillator in this paper is a Béthenod's pendulum, or
Type II-1 oscillator as discussed in [6]. The Type B1 is a Doubochinski's
pendulum, as discussed in [3]. The “Type B2” oscillator is analogous to
a Doubochinski's pendulum, but with a smoother H-function. [3] used a
coarser approximation to the H-function, as shown by Eq. (3). This
approximation was sufficient to elaborate averaged equations and to
derive an expression of the amplitude of the external force as a function
of the oscillator's amplitude, leading to an explanation of a discrete set
of stable amplitudes. We use herein our smoother and more precise
Type-B2 H-function, as shown by Eq. (4), with the advantage of
handling a H-function which is C*: this will allow to eliminate artefacts
in a function relative to the Type-B1 model, and to derive an
approximate symbolic solution.

It will be shown later on that after the averaging process, the
systems of equations of Types A, Bl and B2 are formally similar.

3. Calculus workflow

Having available the reduced-time second-order differential equa-
tion of motion for both oscillators, it is classically considered that a
perturbation method could be an appropriate approach, because the
oscillator is almost always in a free-run mode. Only at certain narrow
locations in space will it “feel” the external force. Moreover, this force is
of small amplitude. Keeping the expressions under symbolic form, we
shall go through three steps to get to an analytic approximation of the
solution to Eq. (1).

The averaging method used in the first and second steps is classical,
and has been described in [9], and used in [3]. So only the implementa-
tion of the method will be outlined for these two steps. Our contribution
to the second step is the symbolic expression of the Fourier series for the
H-functions of the Type-A and Type-B oscillators, the symbolic expres-
sion of the stability criterion in the general case, and the Van der Pol
polar representation of the averaged amplitude and phase. Our
contribution further consists of the third step, which will be detailed
hereinafter.

® The first step of the calculus is to replace the second-order
differential equation of motion by two first-order equations to get
the classical standard system of equations.
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® The second step is to form a Fourier series of the H-function and to
apply the averaging method to obtain an averaged system of
equations. As the external force is periodic, simplifications can be
expected.

® The third step is to find an integrating factor to approximately solve
the averaged system, while keeping the symbolic form of the
equations.

4. First step: building the standard system of equations

Starting from the equation of motion under its general form as
shown by Eq. (1), define a function X by:

X, a, @)= — 2/;% — pa’ + AH(@)E(7).
T

5)
Thus Eq. (1) can be rewritten:
d’a
— 4+ a=X(1, a, @).
de? (6)

By observing the experimental oscillators [6] and corresponding
numerical simulations, one concludes that the motion is close to that
of a free-running oscillator, with slowly varying amplitude and phase.
Hence the slow-varying amplitude a(z) and phase ¢(r) are introduced as
two new independent variables, which will replace the variables a and
a@. The motion, expressed as a function of ¢t or 7, will be
a(t) = a(t)sin(wt + (1)) = a(z)sin(pr + ¢(r)), where o is a parameter
close to wg, and p = % As these two new independent variables are
chosen, we found it natural to introduce a Van der Pol representation,
with a as abscissae and ¢ as ordinates. Alternatively, a polar Van der
Pol representation will also be used, i.e. a as radius and ¢ as angle.
Define the change of variables by putting:

a(r) = a(z)sin(pr + @(7)), )

(€))

This is natural, because Eq. (8) is obtained by differentiating Eq. (7)
with a and ¢ taken as constant. This is simply the implementation of the
physical observation [6] that a and ¢ vary slowly with respect to the
period of the free-running oscillator.

Differentiating Eq. (7) and comparing the result with Eq. (8) yields:

a(r) = a(zr)pcos(pt + ¢(7)).

asin(pt + @) + agcos(pr + ¢) =0 9
Differentiating Eq. (8) and putting the result into Eq. (6) yields:
= 95O) x (7. asin(9), apcos(®)) + asin@)(p> — 1)),
» (10)

where 0 = pt + ¢. This is the first differential equation involving only
the two new variables a and ¢.

In Eq. (10), replacing X(z, asin(f), apcos(0)) by its expression given
in Eq. (5) yields, taking into account Egs. (7) and (8):

i = O i uad + AH(a)sin(ir] + asin(@)(p? — 1)]
P @o
cos(0) 3.3 . . ( v ]
= ———| —2fapcos(0) — pa’sin’(0) + AH (asin(@))sin] —7
P Do
+ asin(@)(p® — 1)). 11)
Substituting in Eq. (9) the expression (10) for a yields:
¢ =- L(asin((%)(p2 — 1) + X(z, asin(@), apcos()))sin(d)
ap (12)

which is the second differential equation involving only the two new
variables a and ¢. From Eq. (12), it is obtained, in the same way as for
Eq. (11):
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