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a b s t r a c t

This study deals with nonlinear oscillators whose restoring force has a polynomial nonlinearity of the
cubic or quadratic type. Conservative unforced oscillators with such a restoring force have closed-form
exact solutions in terms of Jacobi elliptic functions. This fact can be used to design the form of the
external elliptic-type excitation so that the resulting forced oscillators also have closed-form exact
steady-state solutions in terms of these functions. It is shown how one can use the amplitude of such
excitations to change the way in which oscillators behave, making them respond as free oscillators of the
same or different type. Thus, in cubic oscillators, a supercritical or subcritical pitchfork bifurcation can
appear, whilst in quadratic oscillators, a transcritical bifurcation can take place.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This study is concerned with externally excited nonlinear os-
cillators governed by

( )¨ + + = ( )α
αx c x c x F t , 11

where x is the displacement, c1 and αc are the coefficients of the
linear and nonlinear stiffness terms, and where αc is not ne-
cessarily small, while α is the power of nonlinearity that can be
equal either to 3 or 2, and, thus, results in a cubic or quadratic
nonlinearity; the overdots denote differentiation with respect to
time t and F(t) is an external periodic excitation.

Systems that are approximately or exactly governed by Eq. (1)
appear widely in physics and engineering, and some of them are:
pendula, snap-through mechanisms, beams, cables, human ear-
drum oscillations, vibration isolators, etc. (see, for example, [1] and
the references cited therein). Given this wide range of applications,
obtaining their steady-state response to external periodic forcing
has been of particular interest and has resulted in the develop-
ment of many analytical techniques to find approximate steady-
state responses [2–4]. However, the aim here is to show how to
design the periodic excitation ( )F t to get an exact analytical
steady-state solution, noting that these are normally very scarce in
Nonlinear Dynamics. The concept of the “exact steady state” of a

strongly non-linear, undamped, discrete system was defined by
Rosenberg [5,6]: for the steady state forced response of a single
degree of freedom the ratio of the response and the amplitude is
“cosine-like” [6] and of the same period of that of the periodic
forcing function. Harvey considered “natural forcing functions”
proportional to the nonlinear restoring forces and applied them to
the study of the forced Duffing problem [7]. Caughey and Vakakis
[8] examined the exact steady states of a certain class of strongly
nonlinear systems of two degrees of freedom. By expressing the
forcing as a function of the steady state displacements, the forced
problem was transformed to an equivalent free oscillation and
subsequently a matching procedure was followed which resulted
in the uncoupling of the differential equations of motion at the
steady state.

The basic idea used in this work dates back to Hsu's paper [9],
in which he considered Duffing-type oscillators (α = 3) governed
by Eq. (1) with a positive c1 and a positive or negative c3. As these
oscillators have exact closed-form solutions for the conservative
unforced case expressible in terms of Jacobi elliptic functions,
Hsu's approach led to the external excitation having the same
form, i.e. being proportional to the displacement and being ex-
pressed in terms of Jacobi elliptic functions. This idea is extended
in this work to all other oscillators with the cubic or quadratic
nonlinearities that have exact closed-form solutions for the con-
servative unforced case.

This paper is organised as follows. For the sake of the reader the
first part of Section 2 contains an overview of exact closed-form
solutions for certain nonlinear oscillators with cubic and quadratic
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nonlinearity that are expressed in terms of Jacobi elliptic functions
and depend on the system parameters and the amplitude. The
second part of Section 2 includes a brief outline of Hsu's approach
for hardening and softening Duffing oscillators with some physical
interpretations in terms of the forcing amplitude factor. In Section 3,
exact solutions for other nonlinear oscillators with elliptic-type
external excitation are derived for the first time. They include:
bistable oscillators in full swing mode and half-swing mode as well
as pure cubic oscillators. In Section 4, bifurcations in cubic quadratic
oscillators are investigated. It is shown analytically and confirmed
numerically how one can design the external excitation with re-
spect to the parameters of these oscillators to change the way in
which the excited oscillators behave, making them respond as free
oscillators of the same or different type. The corresponding types of
bifurcation are also discussed.

2. Known exact solutions for free and forced oscillations

2.1. Exact solutions for free oscillations

Several nonlinear oscillators governed by

¨ + + = ( )α
αx c x c x 0, 21

have an exact closed-form solution for their free response in terms
of Jacobi elliptic functions. These oscillators are [1,10]:

� Hardening Duffing Oscillator (HDO), for which
α> > =c c0, 0, 31 3 ;

� Softening Duffing Oscillator (SDO), for which
α> < =c c0, 0, 31 3 ;

� Bistable Duffing Oscillator (BDO), for which
α< < =c c0, 0, 31 3 , where two cases can be recognised. The

first one is labelled here by BDO1 and represents the so-called
full swing mode (motion surrounding all the equilibria), and the
second one is labelled here by BDO2 and represents the so-
called half swing mode (motion surrounding one of the non-
zero equilibria);

� Pure Cubic Oscillator (PCO), for which α= < =c c0, 0, 31 3 ;
� Quadratic Oscillator (QO), for which α = 2.

All of these solutions are expressed in terms of Jacobi elliptic
functions (cn, sn or dn) and are listed in Table 1 for each oscillator.
Note that Jacobi elliptic functions have two arguments. In the first
one, the frequency ω appears [1,11]. The second argument is the
elliptic parameter m [1,11], and ranges from 0 to 1 (other values
can also exist, but require certain transformations of the original
Jacobi elliptic functions, and are, thus, avoided here). Note also
that, instead of the elliptic parameter, one can use the elliptic
modulus k²¼m. The value m ¼ 0 transforms the cn function into
the Cosine function, the sn function into the Sine function, while
the dn function becomes equal to unity. As seen from Table 1, both
the frequency ω and the elliptic parameter m depend, in general,
on the stiffness coefficients and the amplitude, while in the case of
the PCO, the elliptic parameter is constant.

The only specific case in Table 1 is the QO and this includes
several features. First, it is the only oscillator from the list whose
response is the quadratic function of the elliptic functions. Second,
unlike other oscillators whose elliptic parameter is the explicit
single-valued function of the system parameter and the amplitude,
this parameter m is implicitly defined here by

( ) ( )= + − − + − +A c m m m c m m1 1 / 2 11
2

2
2 [12], although

this expression can be transformed further to get a real value of m.
In addition, when <c 01 , one has ω = ( − + )c m m0.5 / 11

2 1/4, and it

is obvious that the frequency becomes complex. However, in the
case of complex arguments of Jacobi elliptic functions, certain
transformations can be used to get real arguments [11]. Con-
temporary computer algebra and symbolic software packages
usually have these transformations built-in, offering improve-
ments in ease of computation and transformations.

Table 1 also includes typical phase planes for all the oscillators
listed with the trajectories surrounding their equilibrium/equili-
bria (stable equlibria are depicted by the black dots and the un-
stable ones by the white dots).

All these solutions are closed-form, but to explain and under-
stand what kind of functions they actually represent, one can use
the corresponding Fourier series expansions (see the Appendix A):

⎡
⎣⎢

⎤
⎦⎥( ) ( )∑ π= −

( )=

t m C N
K

tcn cos 2 1
2

,
3aN

N

N
1

⎜ ⎟⎛
⎝

⎞
⎠( ) ∑ π= ( − )

( )=

∞

t m S N
K

tsn sin 2 1
2

,
3bN

N
r1

⎜ ⎟⎛
⎝

⎞
⎠( ) ∑ π= +

( )=

∞

t m D D N
K

tdn cos ,
3cN

N0
1

whose amplitudes depend on m, i.e. = ( )C C m ,N N = ( )S S m ,N N

= ( )D D m ,0 0 = ( )D D mN N . As can be seen, all of them can be in-
terpreted as multi-term periodic excitations; the cn and sn func-
tions contains odd harmonics, while the dn function contains both
the offset and odd and even harmonics; in all cases, the amplitude
and frequencies of the harmonics depend on the elliptic parameter
and are, thus, mutually related, as defined in the Appendix A.

2.2. Brief outline of Hsu's approach with new interpretations

Hsu considered the following periodically driven Duffing os-
cillator [9]

( )¨ + + = ( )x c x c x F t , 41 3
3

including cases when c1 is positive, while the coefficient c3 can be
either positive (HDO) or negative (SDO). The key point of Hsu's
approach is to transform this nonautonomous system into an au-
tonomous one, and then, for such a system, to utilise known ex-
pressions for the exact solutions. To that end it is assumed that the
response x and the excitation force F are proportional, i.e. F¼B x.
With this assumption, Eq. (1) becomes

( )¨ + − + = ( )x c B x c x 0. 51 3
3

It can be seen that Eq. (5) corresponds to the autonomous
system (2) whose exact solutions are given in Table 1. It is im-
portant to point out that the sign of the coefficient in front of the
linear term ( )−c B1 now depends on the parameter B. For the time
being it is assumed that >c B1 , if not noted differently, while other
cases are analysed in Section 4.

2.2.1. Forced HDO
The first case considered is when the transformation F¼Bx is

applied to the HDO, while the assumption >c B1 is retained. The
resulting equation also corresponds to the HDO, and the exact
closed-form solution can readily be found based on those given in
Table 1. Two relationships for the parameters given in Table 1 for
the HDO now become

ω = − + ( )c B c A , 6ar
2

1 3
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