
### Author's Accepted Manuscript

Forecasting Supercritical and Subcritical Hopf Bifurcations in Aeroelastic Systems

Hiroshi Yamasaki, Bogdan I. Epureanu



ww.elsevier.com/locate/nlm

PII: S0020-7462(16)30402-4

http://dx.doi.org/10.1016/j.ijnonlinmec.2016.12.009 DOI:

Reference: NLM2752

To appear in: International Journal of Non-Linear Mechanics

Received date: 16 March 2016 Revised date: 18 November 2016 Accepted date: 13 December 2016

Cite this article as: Hiroshi Yamasaki and Bogdan I. Epureanu, Forecasting Supercritical and Subcritical Hopf Bifurcations in Aeroelastic Systems **International** Journal Non-Linear **Mechanics** of http://dx.doi.org/10.1016/j.ijnonlinmec.2016.12.009

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

### **ACCEPTED MANUSCRIPT**

## Forecasting Supercritical and Subcritical Hopf Bifurcations in Aeroelastic Systems

Hiroshi Yamasaki Bogdan I. Epureanu

#### Abstract

A novel method of forecasting bifurcations based on only the observation of the pre-bifurcation regime is proposed. The method is an extension of previous approaches with a focus on oscillatory systems. The method also enables the use of much less measurement data. Numerical results are presented to demonstrate that this new approach predicts the post-bifurcation regime accurately and to explore the robustness of this method to process noise.

Keywords: forecasting, bifurcation, aeroelasticity, nonlinear systems, post-bifurcation regime, transient response

#### 1. Introduction

Bifurcation phenomena are observed in a variety of systems such as engineered systems [1, 2], climate systems [3], global finance systems [4], ecological systems [5], and biological systems [6]. A few methods of predicting bifurcations by observing the recovery rate of the system from perturbations have been proposed [7-10]. For example, the effects of critical slowing down (such as the increase in the short term autocorrelation or the softening behavior) have been used for forecasting tipping points with application to climate dynamics [11-13] where the system is exposed to small but persistent noise (excitation). In those applications, the focus was on predicting the tipping point qualitatively by, for example, correlating approaching a tipping point with an increase in the autocorrelation of various measured signals. However, these techniques cannot be applied to cases where large perturbations are introduced to the system. A novel method to forecast bifurcations by monitoring the pre-bifurcation regime was suggested by Lim and Epureanu [14]. They proposed a method which can predict bifurcations of the system by

#### Download English Version:

# https://daneshyari.com/en/article/5016462

Download Persian Version:

https://daneshyari.com/article/5016462

Daneshyari.com