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A B S T R A C T

Lie-Hori canonical perturbation theory provides asymptotic solutions for conservative Hamiltonian systems. This
restriction prevents the canonical method from being applied directly to dissipative mechanical systems. There
are, however, two main alternatives to overcome this difficulty, enabling the application of canonical
perturbation methods. The first one consists in constructing a time-dependent Hamiltonian, through a generating
function, related to the energy dissipation pattern of the system. The second embeds the original phase space
into a double dimensional one where the dynamics of the system can be formulated in a Hamiltonian way. In this
paper, a modified Lie-Hori method that avoid the disadvantages of the former approaches is proposed. Namely, it
is not necessary to find out a time-dependent generating function, nor doubling the number of the canonical
variables of the original problem. The new algorithm provides first order analytical solutions for a certain set of
dissipative non-linear dynamical systems. It is based on a suitable modification of the Hori kernel in the double-
dimensional embedding phase space, allowing the inclusion of the dissipative (or generalized) forces. By means
of this redefined auxiliary system, the path-integrals of the method can be performed in a domain of the phase
space with the same dimensionality as the original problem.

1. Introduction

The motion of an unconstrained dynamical system with n degrees of
freedom can be properly described through the Hamilton, or canonical,
equations ([41], Chap. 2, Sec. 91)
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In these m2 differential equations, q p t= ( , , )� � is the Hamiltonian
function of the system, depending on the canonical variables p
(momenta), q (coordinates), and on the time t. The canonical variables
are real variables defined in a certain domain D⊂  m2 , referred to as
phase space, and time varies in an interval I ⊂ . � is assumed to be
real and sufficiently regular in D I× .

In many situations, i.e., for the problems named natural in
Whittaker ([39], chap. III, sec. 38) terminology, � is the sum of the
kinetic and potential energies of the system. In these cases � does not
involve the time explicitly, and it can be identified with the total
mechanical energy of the system, which is conserved in motion ([39],
chap. III, sec. 41).

The analytical resolution of Eqs. (1) is not possible in general.
However, many mechanical systems own a Hamiltonian function that
can be split into the form

= + Δ ,0� � � (2)

with Δ ≪ 0� � , i.e., Δ� is a perturbation of 0� , usually referred to
as unperturbed Hamiltonian. If the dynamics generated by 0� is known
and some additional conditions hold ([2], chap. 10), an asymptotic
solution of the dynamics corresponding to � can be obtained with the
aid of canonical perturbation theories.

The development of canonical perturbation theories1 began in the
second half of the 19th century. Such theories were mainly concerned
with the resolution of some important problems of Celestial Mechanics
like, for example, the lunar theory [8]. Basically, the idea of the method
consists in determining a canonical transformation built from a certain
function (determining or generating function), which leads to canonical
equations easier to integrate.

Subsequent researches pushed those theories forward, specially
with the works by Poincaré [33] and von Zeipel [43]. The last method
played an important role in the determination of the motion of an
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artificial satellite ([5], chap. XVII, sec. 12).
A main achievement was due to Hori [23], who introduced a

perturbation method based on Lie series, allowing a simpler handling of
canonical transformations. It is often referred to as Lie-Hori canonical
method. Later, a close approach was designed by Deprit [9], both
theories being equivalent2 [6]. Lie-Hori's method presents some ad-
vantages [6] with respect to that of von Zeipel's [43]. Specifically: the
determining function of the transformation just depends on the
transformed canonical variables; the theory is formulated through
Poisson brackets,3 hence it is canonically invariant; and it is possible
to provide the expression of any function of the initial canonical set in
terms of the transformed one.

In its original formulation, Hori's method can just be applied to
Hamiltonians independent of time, i.e., q p= ( , )� � . Even so, this
restriction can be easily circumvallated by introducing the extended
phase space of dimension m2 + 2. With this construction, also known as
homogeneous formalism, the time assumes the role of a new canonical
coordinate with conjugated momentum given by −� ([41], chap. 2,
sec. 93, [36], i.a., see Section 2).

In contrast, the application of Hori's method to dynamical systems
affected by dissipative processes (for example, damped harmonic
oscillators) cannot be carried out in a simple way. This is due to the
fact that the construction of the generating function implies the
existence of a privileged dynamical system related to the unperturbed
system, called auxiliary system or Hori kernel ([14], chap. 6, sec. 6.5),
which has the restriction of being Hamiltonian. Therefore, the general-
ized canonical systems, which are characterized by the differential
equations
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cannot be included in this category (hereafter, time-derivative will be
denoted by a dot). In these equations, pi� and qi� are the generalized
(or canonical) forces, whose inclusion is necessary to account for the
dissipation of the system. That kind of equations appears, e.g., when
treating the drag action on the motion of an artificial satellite [5]. When

= 0� , Eqs. (3) reduce to the most general form of a first order
differential system with even unknowns [36]. Indistinctly, generalized
canonical systems will be also denominated as non-Hamiltonian ones.

For the obtention of an asymptotic solution of Eq. (3) when viewed
as a perturbation of 0� and the zeroth-order part of the generalized
forces, there exist specific perturbation algorithms like those based on
the method of averaging [4] or on an extension of the Lie series
methods (e.g., Kamel [25], Henrard [21], Hori [24]).

Nevertheless, it is still possible to use the original Hori's method
with proper modifications of Eqs. (3). Basically, two different ways can
be followed to accomplish this procedure.

On the one hand, it is possible to find a time-dependent canonical
transformation in order to obtain the Eqs. (3) from the Hamiltonian of
the associated non-dissipative dynamical system, i.e., with no general-
ized forces. Since the canonical transformation depends on time, it will
also be the case for the transformed Hamiltonian. However, it does not
pose any obstacle, since the problem can be formulated in the extended
phase space where the Lie-Hori method can be applied. A major
difficulty of this approach is that there is no systematic way to find
that canonical transformation, with the exception of some simplified

dynamical systems like harmonic oscillators (e.g., Nagem et al. [31]).
For them, it is possible to have some a priori knowledge about the
energy dissipation features in the system evolution. It makes feasible to
construct the successful canonical transformation from the non-dissi-
pative dynamical system to recover the original dissipative dynamics
(see Section 5.1).

The second possibility is to hamiltonize the equations of motion by
constructing a single Hamiltonian � , necessarily different from � , in
order to derive Eqs. (3). This approach is originally attributed to
Liouville, and it is already considered in Birkhoff [3].

Within this category, a general procedure consists in embedding the
original 2m-dimensional system into a 4m-dimensional phase space (or
m4 + 4 in the explicitly time-dependent case), and determine the new
Hamiltonian� . In the context of perturbations theories this procedure
can be found, for example, in Kamel [26], Hori [24], and specially in
Choi and Tapley [7], where Hori's original algorithm is utilized once the
embedding procedure has been applied. Although the application of
canonical perturbation theories in this approach is straightforward from
an analytical point of view, the management of the double number of
canonical variables is involved in practice and become a main
disadvantage of the procedure.

This research focuses on a certain set of dissipative dynamical
systems whose analytical asymptotic solution of first-order can be
obtained from Hori's method, without the need of doubling the
dimension of the phase space. In this way, the disadvantages of the
former procedures for general dynamical systems can be avoided, while
preserving their benefits.

Those particular dynamical systems are characterized by the fact
that their unperturbed part, which must include canonical forces, gives
rise to a linear system of differential equations with constant coeffi-
cients with respect to the 2n canonical variables pi and qi, i n≤ . This
condition is not really restrictive in practice, since any unperturbed
Hamiltonian that is integrable (in Liouville sense) can be expressed in
angle-action variables, which produce linear equations of motion. Of
course, the form of linear system is attainable in different manners.

The system may include m n2( − ) additional canonical variables pj
and qj, n j m< ≤ , which do not enter into the unperturbed dynamics,
i.e., they are non-coupled variables (solved independently from the 2n
preceding ones), or even cyclic or ignorable variables.4 The perturba-
tion stems from a non-linear Hamiltonian Δ = 1� � , which is a function
of the whole canonical set and time of the form
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and ft being real and sufficiently regular functions, but otherwise,
arbitrary. A remarkable example of such kind of perturbations appears
in the Hamiltonian theory of the rotation of a two-layer non-rigid Earth,
e.g., Getino and Ferrándiz [16–18], as will be studied as an application
of the method in Section 6.

The paper is structured as follows. In Section 2, the main features of
the first-order Lie-Hori canonical method and the homogeneous
formalism are exposed. In the subsequent Sections 3 and 4, the
proposed modification to the perturbation method is developed con-
structively, including some important mathematical properties. This
comprises the definition of the extended dynamical system within the
double dimensional phase space, and the particular study of the
previously stated non-Hamiltonian systems, allowing the reduction of
the dimensionality of the problem. As it will be shown, the procedure is
based on a suitable definition of an Hori-like kernel of the perturbation
method. In Section 5, different approaches to tackle a dissipative system

2 Although there are slight differences in the approach of both methods ([30], app. C
and D), they are sometimes referred to as Lie-Hori, Lie-Deprit, or even Hori-Deprit
method, indistinctly.

3 The Poisson bracket of two smooth functions f and g of the canonical set is defined by
the bilinear operation
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⎠⎟ 4 In the latter case, cyclic variables are considered with respect to the unperturbed

Hamiltonian. Then, the constant coefficients of the linear system can depend on the
conjugated momenta of these cyclic variables.

T. Baenas et al. International Journal of Non-Linear Mechanics 90 (2017) 11–20

12



Download English Version:

https://daneshyari.com/en/article/5016469

Download Persian Version:

https://daneshyari.com/article/5016469

Daneshyari.com

https://daneshyari.com/en/article/5016469
https://daneshyari.com/article/5016469
https://daneshyari.com

