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a b s t r a c t

Two new methods of numerical integration of Cauchy problems for nonlinear ODEs of the first- and second-order,
which have blow-up solutions are described. In such problems, the position of the singular point is not known in
advance. The first method is based on obtaining an equivalent system of equations by applying a differential
transformation, where the first derivative (given in the original equation) is chosen as a new independent
variable, 𝑡 = 𝑦′𝑥. The second method is based on introducing a new auxiliary non-local variable of the form
𝜉 = ∫ 𝑥

𝑥0
𝑔(𝑥, 𝑦, 𝑦′𝑥) 𝑑𝑥 with the subsequent transformation to the Cauchy problem for the corresponding system

of coupled ODEs. Both methods lead to problems whose solutions are represented in parametric form and do
not have blowing-up singular points; therefore the standard fixed-step numerical methods can be applied. The
efficiency of the proposed methods is illustrated with a number of test problems that admit exact solutions. It is
shown that the methods, based on special exp-type transformations (which are particular cases of the general non-
local transformation), are more efficient than the method based on the hodograph transformation, the method
of the arc-length transformation, and the method based on the differential transformation. The method, based
on introducing a non-local variable, can be generalized to the 𝑛 th-order ODEs and systems of coupled ODEs.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

We will consider Cauchy problems for ODEs, whose solutions tend
to infinity at some finite value of 𝑥, say 𝑥 = 𝑥∗. Such 𝑥∗ does not
appear explicitly in the given differential equation and it is not known
in advance. Similar solutions exist on a bounded interval (hereinafter in
this article we assume that 𝑥0 ≤ 𝑥 < 𝑥∗) and are called blow up solutions.
This raises the important question for practice: how to determine the
position of a singular point 𝑥∗ and the solution in its neighborhood with
the aid of numerical methods.

In general, the blow-up solutions, that have a power singularity, can
be represented in a neighborhood of the singular point 𝑥∗ as

𝑦 ≃ 𝐴(𝑥∗ − 𝑥)−𝛽 , 𝛽 > 0, (1)

where 𝐴 is a constant. For these solutions we have lim𝑥→𝑥∗ |𝑦| = ∞ and
lim𝑥→𝑥∗ |𝑦

′
𝑥| = ∞.
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For blow-up solutions with the power singularity (1) near the
singular point 𝑥∗ we have

𝑦′𝑥∕𝑦 ≃ 𝛽∕(𝑥∗ − 𝑥), (2)

i.e. the required function grows more slowly than its derivative. There-
fore, we have lim𝑥→𝑥∗𝑦

′
𝑥∕𝑦 = ∞ (this is a common property of any blow-

up solutions; it must be taken into account when carrying out numerical
calculations).

The direct application of the standard fixed-step numerical methods
in such problems leads to certain difficulties because of the singularity in
the blow-up solutions and the unknown (in advance) range of variation
of the independent variable 𝑥 (see, for example, [1,2]).

One of the basic ideas of numerical solution of such problems is to
find a suitable transformation, leading to the equivalent problem for one
differential equation or a system of coupled equations, the solutions of
which have no singularities at unknown point.
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Currently, two methods based on this idea are most commonly used.
The first one is proposed by Acosta et al. [3]. They have suggested to
apply a hodograph transformation 𝑥 = 𝑦̄, 𝑦 = 𝑥̄, where the independent
and dependent variables are reversed. The second method, which is
based on the arc-length transformation, has been proposed by Moriguti
et al. [4] (for details, see below Items 2◦ in Sections 3.1 and 5.1 as
well as Ref. [5]). This method is rather general and it can be applied for
numerical integration of systems of ODEs.

The methods based on the hodograph and arc-length transformations
for blow-up solutions with a power singularity of the form (1) lead to the
Cauchy problems whose solutions tend to the asymptote with respect to
the power law for large values of the new independent variable. This
creates certain difficulties in some problems, since one has to consider
large intervals of variation of the independent variable in numerical
integration.

Based on other ideas, some special methods of numerical integration
of blow-up problems are described, for example, in [1,2,5–9].

In this paper, we propose two new methods of numerical integration
of non-linear Cauchy problems for ODEs of the first- and second-
orders, which have blow-up solutions. These methods are based on
the differential and non-local transformations allowing us to obtain the
equivalent systems of ODEs, whose solutions do not have singularities
at some a priori unknown point. It is shown that special exp-type
transformations (which are particular cases of the general non-local
transformation) lead to the Cauchy problems whose solutions tend
exponentially to the asymptote (which determines the position of the
required singular point 𝑥∗) for large values of the new independent
variable; therefore exp-type transformations are more preferable than
the hodograph and arc-length transformations.

2. Problems for first-order equations. Differential transformations

2.1. Solution method based on a differential transformation

The Cauchy problem for the first-order differential equation has the
form

𝑦′𝑥 = 𝑓 (𝑥, 𝑦) (𝑥 > 𝑥0), (3)
𝑦(𝑥0) = 𝑦0. (4)

In what follows we assume that 𝑓 = 𝑓 (𝑥, 𝑦) > 0, 𝑥0 ≥ 0, 𝑦0 > 0, and
𝑓∕𝑦1+𝜀 → ∞ as 𝑦 → ∞, where 𝜀 > 0 (in such problems, blow-up
solutions arise when the right-hand side of a non-linear ODE is quite
rapidly growing as 𝑦 → ∞).

First, we present the ODE (3) as an equivalent system of differential-
algebraic equations

𝑡 = 𝑓 (𝑥, 𝑦), 𝑦′𝑥 = 𝑡, (5)

where 𝑦 = 𝑦(𝑥) and 𝑡 = 𝑡(𝑥) are unknown functions to be determined.
By applying (5), we derive a system of equations of the standard

form, assuming that 𝑦 = 𝑦(𝑡) and 𝑥 = 𝑥(𝑡). By taking the full differential
of the first equation in (5) and multiplying the second one by 𝑑𝑥, we get

𝑑𝑡 = 𝑓𝑥 𝑑𝑥 + 𝑓𝑦 𝑑𝑦, 𝑑𝑦 = 𝑡 𝑑𝑥, (6)

where 𝑓𝑥 and 𝑓𝑦 are the respective partial derivatives of 𝑓 = 𝑓 (𝑥, 𝑦).
Eliminating first 𝑑𝑦, and then 𝑑𝑥 from (6), we obtain a system of the
first-order coupled equations

𝑥′𝑡 =
1

𝑓𝑥 + 𝑡𝑓𝑦
, 𝑦′𝑡 =

𝑡
𝑓𝑥 + 𝑡𝑓𝑦

(𝑡 > 𝑡0), (7)

which must be supplemented by the initial conditions

𝑥(𝑡0) = 𝑥0, 𝑦(𝑡0) = 𝑦0, 𝑡0 = 𝑓 (𝑥0, 𝑦0). (8)

Conditions (8) are derived from (4) and the first equation of (5).
Assuming that the conditions 𝑓𝑥+ 𝑡𝑓𝑦 > 0 at 𝑡0 < 𝑡 < ∞ are valid, the

Cauchy problem (7)–(8) can be integrated numerically, for example, by

applying the Runge–Kutta method or other standard numerical methods
(see for example [10–15]). In this case, the difficulties (described in the
introduction) will not occur since 𝑥′𝑡 rapidly tends to zero as 𝑡 → ∞. The
required critical value 𝑥∗ is determined by the asymptotic behavior of
the function 𝑥 = 𝑥(𝑡) for large 𝑡.

2.2. Test problems. Exact and numerical solutions

Let us illustrate the method proposed in Section 2.1 with simple
examples.

Example 1. Consider the model Cauchy problem for the first-order ODE
with separated variables

𝑦′𝑥 = 𝑦2 (𝑥 > 0), 𝑦(0) = 𝑎, (9)

where 𝑎 > 0. The exact solution of this problem has the form

𝑦 = 𝑎
1 − 𝑎𝑥

. (10)

It has a power-type singularity (a first-order pole) at a point 𝑥∗ = 1∕𝑎
and does not exist for 𝑥 > 𝑥∗.

By introducing a new variable 𝑡 = 𝑦′𝑥 in (9), we obtain the following
Cauchy problem for the system of equations:

𝑥′𝑡 =
1
2𝑡𝑦

, 𝑦′𝑡 =
1
2𝑦

(𝑡 > 𝑡0);

𝑥(𝑡0) = 0, 𝑦(𝑡0) = 𝑎, 𝑡0 = 𝑎2,
(11)

which is a particular case of the problem (7)–(8) with 𝑓 = 𝑦2, 𝑥0 = 0,
and 𝑦0 = 𝑎. The exact solution of this problem has the form

𝑥 = 1
𝑎
− 1

√

𝑡
, 𝑦 =

√

𝑡 (𝑡 ≥ 𝑎2). (12)

It has no singularities; the function 𝑥 = 𝑥(𝑡) increases monotonically
for 𝑡 > 𝑎2, tending to the desired limit value 𝑥∗ = lim𝑡→∞𝑥(𝑡) = 1∕𝑎,
and the function 𝑦 = 𝑦(𝑡) monotonously increases with increasing 𝑡. The
solution (12) for the system (11) is a solution of the original problem (9)
in parametric form.

The maximum error of the numerical solution of the Cauchy problem
for system of Eqs. (11) with 𝑎 = 1 obtained by the classical Runge–Kutta
method of the fourth-order approximation for stepsize ℎ = 0.2 does not
exceed 0.017% for 𝑦 ≤ 50.

Remark 1. Here and in what follows, the numerical integration interval
for the new variable 𝑡 (or 𝜉) is usually determined, for demonstration
calculations, from the condition 𝛬m = 50, where

𝛬m = min{|𝑦|, 𝑦′𝑥∕𝑦} (for |𝑦0| ∼ 1 and |𝑦1| ∼ 1), (13)

and 𝑦1 = 𝑦′𝑥(𝑥0). In a few cases, the condition 𝛬m = 100 or 𝛬m = 150
is used, which is specially stipulated. In the definition of 𝛬m, a relation
𝑦′𝑥∕𝑦 is included that takes into account the property (2). For first-order
ODE problems of the form (3)–(4), the definition of 𝛬m can be replaced
by the equivalent definition 𝛬m = min{|𝑦|, 𝑓∕𝑦}.

Conditions |𝑦0| ∼ 1 and |𝑦1| ∼ 1 in (13) are not strongly essential,
since the substitution 𝑦 = 𝑦0−1+(𝑦1−1)(𝑥−𝑥0)+ 𝑦̄ leads to an equivalent
problem with the initial conditions 𝑦̄(𝑥0) = 𝑦̄′𝑥(𝑥0) = 1.

Example 2. For a more general two-parameter Cauchy problem,

𝑦′𝑥 = 𝑦𝛾 , 𝑦(0) = 𝑎 > 0,

having a blow-up solution for 𝛾 > 1, the introduction of a new variable
𝑡 = 𝑦′𝑥 leads to the system of equations of the form (7), the solution of
which is determined by the formulas

𝑥 = 1
𝛾 − 1

(

𝑎1−𝛾 − 𝑡
1−𝛾
𝛾
)

, 𝑦 = 𝑡
1
𝛾 (𝑡 ≥ 𝑎𝛾 ). (14)

This solution behaves qualitatively similar to the solution (12) as 𝑡 → ∞.
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