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A B S T R A C T

Material cavitation under tensile loading is often studied by assuming the pre-existence of a small void. In this
case the void would initially grow but without significant change in its size, and cavitation is said to take place if
this slow growth is followed by rapid growth at higher load values. In the limit when the original void radius δ
tends to zero, there will be no growth until a load or stretch measure, λ say, reaches a well-defined critical value
λcr at which a cavity appears suddenly. In this paper we study the near-critical asymptotic behavior of cavitation
in plane membranes when δ is not zero but small, and show that the near-critical behavior is governed by a
scaling law in the form λ λ C δ L− = ( / )m

cr , where L is the undeformed outer radius of the plane membrane, and C
and m are non-dimensional constants. The positive power m in general depends on the material model used, but
for the three classes of material models considered, it happens to be equal to ν ν2(1 + )/(3 + ) in each case, where
ν is Poisson's ratio for infinitesimal deformations. If a pre-existing void is viewed as an imperfection, then this
scaling law describes the imperfection sensitivity of cavitation: it states that in the presence of imperfections
significant void growth would occur if λ were increased to within an order δ L( / )m interval around λcr.

1. Introduction

In some tension experiments on rubber materials [1–4], it is shown
that internal micro-voids could nucleate suddenly (known as cavita-
tion) under certain critical loading conditions. With continued loading
a series of cavities may grow, coalesce, and eventually form large
enclosed cracks. Thus, cavitation may signal the onset of material
failure.

Cavitation in rubber materials was first demonstrated experimen-
tally by Gent and Lindley [1] who also provided a theoretical explana-
tion, but it was not until after Ball [5] had formulated it as a rigorous
bifurcation problem that an explosive growth of interest followed. In its
simplest form, namely an isotropic sphere with a small void at its center
that is subjected to a hydrostatic tension on its outer surface, the
cavitation problem consists of solving a two-point boundary value
problem involving a single nonlinear second-order ordinary differential
equation. The critical tension can be obtained by taking two limits one
after the other: firstly the undeformed cavity radius tending to zero, and
then the deformed cavity radius tending to zero. This has been
demonstrated by Horgan and Abeyaratne [6], and is justified by the
rigorous results of Sivaloganathan et al. [7]. When the material is
incompressible, the radially axisymmetric deformation can be deter-
mined to within an arbitrary constant irrespective of the form of the

strain-energy function, and determination of the critical tension and
post-buckling deformation is then reduced to the evaluation of an
integral. When the material is compressible, the two-point boundary
value problem can be solved by a shooting procedure in the most
general case (see, e.g., [8]), but many studies have focused on finding
closed-form solutions for specific material models (see, e.g., [9–12]).
There also exists a large body of literature concerned with the effects of
anisotropy, material inhomogeneity, surface tension, and plastic beha-
vior; see, e.g., [13–19]. We refer to [20,21] for a comprehensive review
of the literature. An interesting result that deserves special mentioning
is that whereas cavitation in a homogeneous isotropic solid sphere is a
supercritical bifurcation, cavitation may change into a subcritical
bifurcation when material inhomogeneity or anisotropy is taken into
account.

Because of its relevance in a wide range of applications, cavitation
in solids is still a topic of active research. Cristiano et al. [22] and
Hamdi et al. [23] have recently conducted further experiments in order
to understand the connection between cavitation and material fracture.
Dorfmann and Burtscher [24] and Kumar et al. [25] suggested that
cavitation was the primary cause of irreversible stress softening in
seismic bearings; the same opinion was expressed for metal materials
[26–28]. Increased attention has also been paid to cavitation associated
with general geometries and loading conditions, and its numerical
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computations [29–33]. More closely related to the current study is the
growing interest in cavitation in soft and biological materials. For
example, David and Humphrey [34] studied the stress and strain
concentration due to the introduction of a circular hole in an
anisotropic bio-tissue, Merodio and Saccomandi [35] studied the effect
of fibre-reinforcement in the radial direction, McMahon et al. [36] and
Pence and Tsai [37,38] investigated cavitation due to growth and
swelling, respectively, and Volokh [39] suggested that cavitation
instability could be a rational indicator of aneurysm rupture.

This paper is concerned with the asymptotic properties of cavitation
solutions, an aspect of the cavitation problem that seems to have been
under-studied. Horgan and Abeyaratne [6] considered cavitation
associated with a Blatz-Ko material, and derived two asymptotic
expressions for the deformed void radius r δ( ) valid for λ λ< cr and
λ λ> cr , respectively, where δ is the undeformed void radius, λ is the
azimuthal stretch imposed at the outer surface and λcr its critical value.
It was shown that when λ λ< cr , the deformed radius r δ( ) is of order δ,
whereas when λ λ> cr , the leading order term in r δ( ) is independent of
δ, indicating that in this parameter regime the azimuthal stretch r δ δ( )/
would tend to infinity as δ → 0. We note, however, that these
expansions would break down in the limit λ λ→ cr, which is the
parameter regime to be examined in the current paper. Some asympto-
tic results have been derived by Negrón-Marrero and Sivaloganathan
[40] to aid their numerical calculations. In particular, they showed that
even for a general strain-energy function the deformed cavity radius is
given by r C λ λ(0) = ( − ) n

cr
1/ to leading order as λ approaches λcr, where

C is a positive constant and n is the dimension of the cavitation
problem.

It is well-known that although cavitation is a bifurcation phenom-
enon, it cannot be studied using the traditional methods of linear and
weakly nonlinear bifurcation analysis – it is an intrinsically nonlinear
problem. Despite this difference, the bifurcation diagram, showing the
dependence of cavitation size on the applied tensile pressure, is
nonetheless of the same shape as that for more traditional buckling
problems such as the pitch-fork bifurcation associated with Euler
buckling. A pre-existing void can be viewed as an imperfection, and
the associated imperfect bifurcation diagram can be viewed as an
“unfolding” of the perfect bifurcation diagram, in exactly the same
manner as in Euler buckling; see, e.g., Fig. 1 in [6], or the three figures
in the current paper. In the case of Euler buckling, a simple near-critical
analysis would yield an amplitude equation of the form

p p A c A c δ( − ) + + = 0,cr 1
3

2 (1)

where A is a measure of the unscaled buckling amplitude (e.g. the
maximum deflection), p is the compressive load and pcr its critical value,
c1 and c2 are constants, and δ denotes the amplitude of the imperfec-
tion. According to this amplitude equation, when p is much smaller
than pcr so that p p− cr is finite, dominant balance is between the first
and third terms in (1), which yields A δ∼ , where “∼” means “is of the
same order as”. On the other hand, when p p− cr is sufficiently small so
that all the three terms in (1) are of the same order, we have

A δ p p δ∼ , and − ∼ ,1/3
cr

2/3

which are the scalings of most interest in the assessment of structural
integrity. The final parameter regime of interest is when p p− cr is much
larger than δ2/3, in which case dominant balance is between the first two
terms, the effect of imperfection is not felt to leading order, and so the
bifurcation curve tends to its counterpart in the absence of imperfec-
tions.

Thus, an amplitude equation such as (1) serves to capture the near-
critical behavior, and it is well-known that the solution given by (1)
gives a very good approximation to the exact solution around p p= cr
even when δ is only moderately small. The main objective of the current
study is to demonstrate that a near-critical amplitude equation analo-
gous to Eq. (1) can also be derived for the cavitation problem. We shall
consider three material models for which the cavitation solution can be

obtained in closed-form.
The rest of this paper is organized as follows. After formulating the

cavitation problem in the next section, we present the above-mentioned
asymptotic analysis for three classes of material models in the
subsequent sections. In the final section we reflect on our main results
and conclude the paper with some additional comments.

2. Problem description

We consider a uniform circular membrane containing a pre-existing
circular hole with radius δ at its center, and the membrane is subjected
to radial tension. The undeformed configuration occupies the region
D R Θ δ R Θ π= {( , )| ≤ ≤ 1, 0 ≤ ≤ 2 }0 in terms of plane polar coordi-
nates, where the outer radius of the membrane has been taken to be
unity, corresponding to the fact that we are using the actual radius as
the unit of lengths. We assume that the resulting axisymmetric
deformation is given by

r r R θ Θ= ( ), = , (2)

where r and θ are the plane polar coordinates in the current config-
uration, and the function r(R) is to be determined. The associated
principal stretches of the deformation are then given by

λ r
R

λ r
R

= d
d

, = .r θ (3)

In the subsequent analysis, the subscripts r and θ are interchangeable
with 1 and 2, respectively. We shall denote the azimuthal stretch at the
outer boundary R=1 by λ, that is r λ(1) = , and take λ as the control
parameter in the subsequent bifurcation analysis. The deformed
configuration then occupies the region D r= {( ,
θ r δ r λ θ π) | ( ) ≤ ≤ , 0 ≤ ≤ 2 }.

In the absence of body forces, the only equilibrium equation that is
not satisfied automatically can be written as

σ
R

r
R

σ σ
r

d
d

+ d
d

− = 0,r r θ
(4)

where σr and σθ are the principal Cauchy stress components (measured
per unit length in the deformed configuration). When the membrane is
viewed as a two-dimensional elastic continuum with strain energy
function W λ λ( , )r θ (measured per unit area in the undeformed config-
uration), the Cauchy stresses are given by

σ
λ

W
λ

σ
λ

W
λ

= 1 ∂
∂

, = 1 ∂
∂

.r
θ r

θ
r θ (5)

Eq. (4) is to be solved subject to the displacement boundary condition

r λ(1) = , (6)

and the traction-free boundary condition

σ δ( ) = 0.r (7)

If the above boundary value problem in the limit δ → 0 has a non-trivial
solution with r (0) > 0 for some λ, cavitation is said to occur. The above
cavitation problem was solved in a series of papers by Haughton
[8,41,42]. His approach was to start with a 3D strain-energy function
and obtain the reduced 2D strain-energy function by using the
membrane assumption σ = 03 to eliminate the principal stretch λ3 in
the thickness direction. In particular, he showed that for the class of
strain-energy function given by

∑W μ λ λ λ α= ( + + − 3)/ ,
r

n

r
α α α

r
=1

1 2 3
r r r

where α α α< < ⋯ < n1 2 , sufficient conditions for non-existence of
cavitation are α > 11 or

α α α< − 1 and 2 > 3 − ,n1 1

but the class of strain-energy function given by
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