
Contents lists available at ScienceDirect

International Journal of Non-Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

Dynamic preserving method with changeable memory length
of fractional-order chaotic system

Wenxian Xiea, Jianwen Xua,⁎, Li Caia,b, Zifei Lina

a Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, PR China
b NPU-UoG International Cooperative Lab for Computation & Application in Cardiology, Northwestern Polytechnical University, Xi'an 710072, PR China

A R T I C L E I N F O

Keywords:
Nonstandard finite difference
Fractional derivatives
Changeable memory length
Lü system

A B S T R A C T

In this paper, an asymptotically stability condition α β γ+ ≥ 3 of the fractional-order Lü system is proposed by
using the theory of stability. Under this asymptotically stability condition and the Riemann-Liouville fractional
derivative definition, the numerical efficiency is obtained by combining the nonstandard finite difference
method with the Grünwald-Letnikov method. In addition, the reported dynamic preserving properties of the
nonstandard finite difference method are verified by comparing with the predictor-corrector algorithm.
Moreover, in order to reduce the computation time of fractional derivatives, a model with changeable memory
length of short memory principle is introduced and solved by the nonstandard finite difference method. In the
numerical examples, about 30% of computation time can be reduced by applying the changeable memory length
model.

1. Introduction

Recently, some numerical methods have been applied to solve the
fractional-order differential equations [1–4]. The finite difference
scheme in [1] is proposed to solve the fractional advection dispersion
flow equations. In [2], the finite element methods have been applied to
the fractional-order two point boundary value problem. An variational
iteration numerical method in [3] was presented to solve some
nonlinear differential equations of fractional order. In addition, the
predictor-corrector (PC) algorithm in [4] is one of the most useful
method among these methods. Considering these numerical methods
for fractional-order differential equations, there still exist two main
problems as follows: The difficulty of computational complexity of
fractional derivatives which is essentially because fractional derivatives are
nonlocal operators [5]; Preserving the dynamic properties of the original
continuous system once be discretized [6].

How to solve these two problems* Firstly, the short memory
principle (SMP) will be considered in this paper. Some methods of
SMP were proposed in [5,7–9], such as the nested meshes method in [7]
and the fixed memory length method in [8,9]. While the problem of the
fixed memory length method is the losing of information of the chaotic
system in the early part of the integral interval. Hence, the method with
changeable memory length of SMP based on Grünwald-Letnikov
method [10] is necessary to be considered in this paper to avoid the
problem and reduce the difficulty of computation. Secondly, the

nonstandard finite difference (NSFD) method proposed in [11–13] will
be used in this paper, for the goal of the method is to design finite
difference methods that are dynamically consistent when the contin-
uous time models being discretized [14]. While the so-called dynamic
consistency property of the NSFD method is not clear proven, but
suggested by many numerical results or proved with some bounded and
positive conditions at present, such as [15,14,16,17]. Therefore, the
dynamic consistency property will be considered mainly in numerical
in this paper, for it may beyond our knowledge to prove it analytically
at present. The positive applications of the NSFD method can be found
in the fields of physics, chemistry, engineering [18–20] and etc.
Especially, the most attractive applications are in mathematical biology
and ecology [21–24] where the merit of the NSFD method has been
shown prominently. In addition, the dynamic preserving properties of
the NSFD method are also well performed in solving fractional-order
system [24–27]. Therefore, the NSFD method will be implemented
combining with the Grünwald-Letnikov method under the Riemann
Liouville definition [8], and the proposed property of the NSFD method
will be verified numerically in this paper.

Without loss of generality, we employ the NSFD method to obtain
numerical solutions of the fractional-order Lü system in [28] which has
massive dynamic behaviors. The Lü system was introduced in [29] and
considered as the bridge of the Lorenz system and Chen system. The
applications of the system can be found in chaos synchronization
[28,30–32]. Based on the theorem of stability [33], the asymptotic
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stability condition of the fractional-order Lü system will be obtained in
this paper. In addition, the properties of the NSFD method will be
investigated by comparing with the PC algorithm under the asymptotic
stability condition. Moreover, in order to verify the reliability and
efficiency of the proposed changeable memory length method, the
corresponding numerical results are obtained via the NSFD method.

This paper is organized as follows. In Section 2, the preliminaries of
the NSFD method and Grünwald-Letnikov method are presented. In
Section 3, the method of changeable memory length L are derived. The
construction of the NSFD scheme and analysis of stability of the
fractional-order Lü System are shown in Section 4. In Section 5, the
numerical results of the fractional-order Lü System are presented to
verify the performance of the NSFD method and the changeable
memory length method. At the end of this paper, the conclusions and
acknowledgements are offered.

2. Preliminaries

2.1. The nonstandard finite difference method

The general approach of the NSFD method was first proposed by
Mickens [11–13] is of simplicity in constructing the discrete scheme for
the PDEs or ODEs. The NSFD discrete models are capable to replicate
the properties of the exact solution of the original PDEs or OEDs with
the following rules [13]:

1. The orders of the discrete derivatives should be equal to the orders
of the corresponding derivatives of the differential equations.

2. Denominator functions for the discrete derivatives must, in general,
be expressed in terms of more complicated functions of the step sizes
than those conventionally used.

3. Nonlinear terms must be approximated in a nonlocal way.
4. Special conditions that hold for the solutions of the differential

equations should also be special discrete for the finite difference
scheme.

5. The scheme should not have solutions that do not correspond to
solutions of the differential equations.

Consider a given differential equation as follows:

dy t
dt

f y t( ) = ( ( )),
(1)

where f y t( ( )) is an arbitrary continuous function. Applying the NSFD
method to Eq. (1), the discrete form can be written as
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Since the form of the discrete derivative may be not unique, another
form was used in [34]:
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The function ϕ h( ) in Eqs. (2)–(3) is the denominator functions of the
time step size h and the ϕ h( ) must satisfy the Eq. (4) which is in
agreement with the Rule 2:

ϕ h h O h( ) = + ( ),2 (4)

where h t n t kh k n= / , = ( = 0, 1, …, )k . Here, function ϕ h( ) can be
h h, sin( ), or e − 1h , etc. To satisfy the Rule 3, the nonlinear term in
the right hand side of Eq. (1) must be replaced by nonlocal discrete

form, such as
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Another nonlocal discrete approximations for these nonlinear terms
were given by Mickens in [35] as follows:

⎪
⎪

⎧
⎨
⎩

ay
a y y y a

a y y y a
≈

(1 + ) − , if > 0,

−( + 1) + , if < 0,k
m k

m
k
m

k

k
m

k k
m

−1
+1

−1
+1 (6)

where a is the coefficients in f(y). In this paper, Eq. (6) is used to
approximate the nonlinear terms of the fractional-order Lü system.

2.2. The Grünwald-Letnikov method

If the following q order Riemann-Liouville fractional derivative [8]
is implemented:
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the corresponding fractional differential equation has the form

D y t f y t( ) = ( ( )).t
q

a (8)

The Grünwald-Letnikov method in [10] is used to approximate the
fractional derivative based on the finite differences on an uniform grid
in t[0, ] with step h. For the sake of simplicity, assume that the function
D y t( )t

q
a satisfies some smoothness conditions in interval t[0, ]. Set up the
grid τ τ τ t j h0 = < < ⋯ < = = ( + 1)j0 1 +1 where h τ τ= −j j+1 , one can
apply the notation of the finite differences
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Then Grünwald-Letnikov method can be referred to [10], that is,
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Inspired by the NSFD method, Eq. (10) can be rewritten as:
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Therefore, the final NSFD approximation of fractional derivative
D y t( )t

q
a is shown in Eq. (11).

3. The changeable memory length method

Considering the SMP, the changeable memory length method based
on the Grünwald-Letnikov method is given here.

The SMP was described by Podlubny [8] which is commonly referred
to as the fixed memory principle with length L > 0. The truncation error
ε t( ) referred to [8,9] has the following form:

ε t ML
Γ q

( ) ≤
(1 − )

,
q−

(12)

where M f y τ= sup ( ( ))τ t∈[0, ] , L is the fixed memory length and Γ(·)
denotes the Gamma function. In fact, L should be a time dependent
variable, and then the upper bound of ε t( ) in inequality (12) is not
sharp. Hence, a proposition is proposed to determine adaptive L and the
numerical errors are analyzed in Section 5.3.

Proposition 1. Let the global memory intensity L L= max ( )f
i i
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