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A B S T R A C T

In this paper we present a bifurcation analysis of two periodically forced Duffing oscillators coupled via soft
impact. The controlling parameters are the distance between the oscillators and the difference in the phase of the
harmonic excitation. In our previous paper http://arXiv:1602.04214 (P. Brzeski et al. Controlling multistability
in coupled systems with soft impacts [11]) we show that in the multistable system we are able to change the
number of stable attractors and reduce the number of co-existing solutions via transient impacts. Now we
perform a detailed path-following analysis to show the sequence of bifurcations which cause the destabilization
of solutions when we decrease the distance between the oscillating systems. Our analysis shows that all solutions
lose stability via grazing-induced bifurcations (period doubling, fold or torus bifurcations). The obtained results
provide a deeper understanding of the mechanism of reduction of the multistability and confirmed that by
adjusting the coupling parameters we are able to control the system dynamics.

1. Introduction

Systems interacting via impacts have attracted in recent years the
attention of a growing number of researchers. In many mechanical
systems, such as tooling machines, walking and hopping machines or
gears, the motion of some elements is limited by a barrier or the other
parts of a machine. In this paper we focus on mechanical interactions
produced via soft impacts [1]. Therefore we assume a finite, nonzero
contact time and a penetration of the colliding bodies. The contact
forces are modeled using a linear [2,3], Hertzian [4,5] or other non-
linear [6] spring and a viscous damper. To describe the behavior of such
systems we introduce separate sets of smooth ODEs governing the
system motion during the in-contact and out-of-contact stages.

Numerous investigations have been devoted to the analysis of
various dynamical phenomena induced by impacts. The characteristic
bifurcation for such systems is the grazing bifurcation, which can occur
both for non-impacting and impacting solutions [7–10]. The grazing
bifurcation occurs when the velocity of impact is zero and the trajectory
just touches the boundary of impact. Hence, when passing the grazing
point the change of a control parameter causes an appearance of a new
impact, which takes place with zero impact velocity (a grazing impact).
Grazing bifurcations may induce different events, such as sudden loss of
stability, emergence of a new orbit or multiple orbits, a change in the

period of the system's motion or creation of a chaotic attractor.
In this paper we carry out a bifurcation analysis of two non-linear

oscillators interacting via transient impacts. We consider system of two
identical oscillators and assume the interaction starts when the distance
between them is sufficiently small. When the systems are uncoupled we
observe multiple stable attractors for each subsystem, so the overall
system is also multistable. Therefore, in this system we are able to
change the number of stable attractors and reduce the multistability via
transient impacts. This phenomenon has been introduced in our
previous paper [11]. In this paper we investigate the mechanism that
lies behind this phenomenon and show the sequence of bifurcations
which cause the destabilization of solutions.

The paper is organized as follows. In Section 2 we introduce the
model of two Duffing oscillators coupled via soft impacts. The descrip-
tion of continuation procedure is presented in Section 3. Then, in
Section 4 we show the bifurcation analysis in one and two control
parameters. Finally, in Section 5 the conclusions are given.

2. Physical model of the coupled Duffing oscillators and equations
of motion

We investigate two coupled Duffing oscillators schematically pre-
sented in Fig. 1. The motion of the system is governed by the following
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equations:

Mx k x k x cx F F ωt¨ + + + ˙ + = sin( ),C1 1 1 2 1
3

1 (1)

Mx k x k x cx F F ωt φ¨ + + + ˙ − = sin( + ),C2 1 2 2 2
3

2 (2)

where a single over dot means differentiation with respect to the
dimensional time. Here, FC stands for the contact force generated by the
discontinuous dissipative coupling, given by
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k x x d c x x x x d

= 0, − < ,
( − − ) + ( ˙ − ˙ ), − ≥ .C

c c

1 2

1 2 1 2 1 2 (3)

In the present study, we will consider the equations of motion
(1)–(2) in dimensionless form, according to the following formulas:
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where mℓ = 1[ ]r , m kg= 1 [ ]r and ω rad s= 1[ / ]r are the reference
length, mass and frequency respectively. In the rest of the paper, the
results will be presented considering the nondimensional variables
and parameters introduced above. Nevertheless, all tildes will be
omitted for the sake of simplicity. Similarly to our previous investiga-
tion [11] the controlling parameters will be the distance d between the
subsystems and the phase shift in the excitation force of the second
system φ.

3. The coupled Duffing oscillators as a piecewise-smooth
dynamical system

The governing equations (1)–(2) can be studied in the framework of
piecewise-smooth dynamical systems [12]. In this context, the state space
is typically divided into disjoint subregions, each defining a particular
operation mode of the system, where the system behavior is described
by a smooth vector field. The boundaries of the subregions are defined
by the zero-set of smooth scalar functions (known as event functions).
Event functions are usually connected to physical instantaneous events,
such as: impacts, switches, transitions from stick to slip motion, etc.
When a trajectory crosses the boundary of a subregion, the vector field
describing the system behavior is switched according to the governing
laws of the system. A boundary crossing can be accurately detected by
means of e.g. the standard MATLAB ODE solvers together with their
built-in event location functionality [13,14], as implemented in [15].

To study the dynamics of the coupled Duffing oscillators, we employ
path-following (continuation) method, which enables to systematically
explore a model response subject to parameter variations [16], with
focus on the detection of possible qualitative changes in the system
dynamics (bifurcations). Computational tools specialized on path-
following algorithms for piecewise-smooth dynamical systems have
been developed in the past, such as SlideCont [17], TC-HAT [18] (see
also [19–23] for some applications of this tool) and, more recently,
COCO [24,25]. In the present work, we will apply COCO to study the
non-linear behavior of the coupled Duffing oscillators. The next section
will explain in detail the mathematical setup required to use the

continuation software in order to carry out the numerical investigation.

3.1. Modeling of the coupled Duffing oscillators in COCO

In this paper we perform numerical investigation using path-
following toolbox COCO (abbreviated form of Computational
Continuation Core [24]). It is a MATLAB-based analysis and develop-
ment platform for the numerical solution of continuation problems. The
software provides the user with a set of toolboxes that covers, to a good
extent, the functionality of available continuation packages, e.g. AUTO
[26] and MATCONT [27]. A distinctive feature of COCO is, however,
that it offers a general-purpose framework for the user to develop
specialized toolboxes that can be constructed based on a number of
generic COCO-routines, common across a large range of continuation
problems.

In our investigation we will use the COCO-toolbox ‘hspo’, which
extends and improves the functionalities of the software package TC-
HAT [18], an AUTO-based application for continuation and bifurcation
detection of periodic orbits of piecewise-smooth dynamical systems.
The main differences between these two continuation toolboxes are
discussed in detail in [25]. The mathematical setup required to apply
the COCO-toolbox ‘hspo’ is the same as for TC-HAT. It requires to divide
a piecewise-smooth periodic trajectory into smooth segments. Each
segment is then characterized by a smooth vector field describing the
system behavior in the segment and an event function that defines the
terminal point of the segment, as explained at the beginning of Section
3. What follows,

 λ d φ ω F M k k c k c π≔( , , , , , , , , , ) ∈ × [0, 2 ) × ( )c c1 2 0
+ + 8 and u≔

x x v v( , , , ) ∈T
1 2 1 2

4 denotes the dimensionless parameters and state
variables of system (1)–(2), respectively, where 0

+ stands for the set
of nonnegative numbers. Below, we introduce the segments that are
used for the numerical implementation in COCO.

No Contact (NC). This segment occurs when the oscillating masses
move without touching each other, i.e. x x d( − <1 2 . In this segment the
contact force FC equals zero (see Fig. 1). The motion of the coupled
Duffing oscillators during this regime is governed by the system of
equations (cf. Eqs. (1)–(2))
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where the prime symbol denotes differentiation with respect to the
nondimensional time. This segment terminates when a transversal
crossing with the impact boundary defined by

h u λ x x d( , )≔ − − = 0IMP 1 2

is detected, and the system switches to the Contact segment introduced
below.

Contact (C). In this operation mode the oscillating masses are in
contact, i.e. x x d− ≥1 2 , which gives rise to an additional force due to
the discontinuous coupling defined by the spring-damper pair k c( , )c c .
The dynamics of the system in this operation mode is described by the
equations (cf. Eqs. (1)–(2))
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with the terminal point being defined by the event h u λ( , ) = 0IMP , after

Fig. 1. Model of two discontinuously coupled Duffing oscillators.
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