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A B S T R A C T

A Reynolds equation modelling chemical mechanical polishing in cylindrical polar coordinates is derived.
Coriolis force effects are included in the derivation of the model equation. The main effect of the Coriolis force is
to increase the magnitude of the peak pressure. A model for the peak pressure is given by p p κmax / ≈ /ϵatm where

p is the pressure, patm is atmospheric pressure, κ = 5 × 10−8 is a constant and ϵis a ratio of the thin film height to
the height of the Ekman boundary layer. The value of ϵis obtained through numerical experimentation. Using the
physical experimental parameters we show that for Newtonian fluids �ϵ = (10 )−5 .

1. Introduction

In this paper we derive a Reynolds equation modelling the effects of
Coriolis force on chemical mechanical polishing (CMP). CMP is a
process that uses an abrasive-corrosive chemical slurry with a polishing
pad to smooth down the surface of a wafer and reduce any irregularities
on the wafer surface. The diameter of the polishing pad is greater than
the diameter of the wafer. CMP is used to remove unwanted conductive
or dielectric materials from a silicon wafer in order to achieve a flat and
smooth surface upon which an integrated circuit can be etched. The pad
and wafer are pressed together by a dynamic polishing head and held in
place by a retaining ring (see Fig. 1). The dynamic polishing head is
rotated about a different axes of rotation. CMP removes material from
the wafer in the process of making the wafer flat. Coriolis force effects
are included in the Reynolds equation by investigating an inertial frame
rotating about a vertical axis on the rotating disk. The mass lost from
the wafer is neglected in our model. A schematic of the problem is
shown in Fig. 2.

Beschorner et al. [1] derive a Reynolds equation in cylindrical polar
coordinates to model a pin-on-disk and CMP system without entrain-
ment velocity assumptions. Beschorner et al. [1] find that using a
Reynolds equation in cylindrical polars is not useful when modelling
physical phenomena where the radial velocity u u r= ( ) and the angular
velocity v v θ= ( ) because a big discrepancy between experimental data
and physical phenomena occur. Beschorner et al. [2] show that the
Reynolds equation in cylindrical polar coordinates that they derive
should be used when entrainment velocities are known to vary with
radial and/or angular velocity, i.e. u u r θ= ( , ) and v v r θ= ( , ) to
determine the pressure. This Reynolds equation yields results that
compare well with experimental data and physical phenomena.

Momoniat and Mason [3] and Myers and Charpin [4] have

introduced two alternate models for the Coriolis force acting on a thin
film on a rotating disk. The major difference between the two models
arises in the formulation of the azimuthal velocity scale. Momoniat and
Mason [3] assume that the azimuthal velocity scale is the same order as
the radial velocity scale. This implies that the angular velocity of the
fluid is similar to the velocity at which the fluid is sliding horizontally.
Myers and Charpin [4] assume the Coriolis force drives the flow in the
azimuthal direction. In this paper we follow the formulation of Myers
and Charpin [4] where we assume the fluid is Newtonian.

The paper is divided up as follows: in Section 2 we derive and solve
a Reynolds equation modelling CMP in cylindrical polar coordinates
that includes Coriolis force effects. Concluding remarks are made in
Section 3.

2. Chemical-mechanical polishing

From Fig. 2 we observe that the disk has angular velocity
ωΩ = (0, 0, )D

A
D relative to frame A centered on the disk and the wafer

has angular velocity ωΩ = (0, 0, )W
B

W relative to frame B centered on the
wafer. Since v Ω r= × we have ω θ ω rv = ( − , , 0)A D D D D for any point on
the disk. For any point on the wafer we have u v wv = ( , , )B where
u v w( , , ) are the radial, angular and azimuthal velocities respectively.

We consider a point Q on the wafer with coordinates r θr = ( , , 0)B B B
relative to frame B. The position of Q relative to an observer at the
centre of the disk is given by

r r r= + ,A AB B (2.1)

where rA is the position of the point relative to frame A, rAB is the is the
relative position of the origin of frame B from frame A and rB is the
position of the point on the film relative to frame B. In CMP the wafer
remains a fixed distance, d, away from the centre of the rotating disk.
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The velocity of the centre of frame B relative to the centre of frame A is
given by ω θ dωv = ( − , , 0)A D D D .

For the angle in radians we have the arc-length S rθ= where S ωt=
for the angular velocity ω. For the disk we therefore have θ r ω t= /( )D D D
and for the wafer θ r ω t= /( )W W W . The dimensions of the angle θ S[ ] = [ ]
when using this formulation. This is important later on when we apply
the thin-film approximations to the Navier-Stokes equations in a
rotating frame. From the arc-length formulation for the angle we get

d d ω tr = ( , /( ), 0)AB D where t is the duration of the motion. The position
of Q relative to frame B is given by r r ω tr = ( , /( ), 0)B W . We find that

rω rω t vω uωΩ Ω r Ω v× × = ( − , − / , 0), × = ( − , , 0).B B B W W W
B

B W W
2 (2.2)

When comparing velocities from frame A to frame B we have

t t t t
v v v

Ω v Ω r Ω Ω r
∂
∂

=
∂
∂

+
∂
∂

+ 2 × + ∂
∂

× + × × ,A AB B
B B B (2.3)

Nomenclature

patm the atmospheric pressure
ρ the density
Bo the Bond number
B the pin curvature parameter
hM the mean film thickness
α the roll angle
β the pitch angle
ωD the angular velocity of the pad/disk
ωD the dimensionless angular velocity of the pad/disk
ωw the angular velocity of the wafer
ωw the dimensionless angular velocity of the wafer
R the wafer radius
d the distance of the wafer centre from the centre of the pad
d the dimensionless distance of the wafer centre from the

centre of the pad
r the radial coordinate
r the dimensionless radial coordinate
θ the angular coordinate
z the azimuthal coordinate
z the dimensionless azimuthal coordinate
u the radial velocity
u the dimensionless radial velocity
v the angular velocity
v the dimensionless angular velocity
w the azimuthal coordinate
w the dimensionless azimuthal coordinate
h0 the characteristic height of the film
L the characteristic length of the fluid
U the characteristic horizontal velocity
t the time
t the dimensionless time
p the pressure

p the dimensionless pressure
μ the dynamic viscosity
b the body force
b the dimensionless body force
Ω the angular velocity
ν the kinematic viscosity
W the characteristic azimuthal velocity
g the gravitational constant of acceleration
κ constant
ϵ a ratio of the thin film height to the height of the Ekman

boundary layer
Ek height of the Ekman boundary layer on the wafer
EkD height of the Ekman boundary layer on the disk
ΩD

A angular velocity of the disk relative to frame A centered on
the disk

ΩW
B angular velocity of the wafer relative to frame B centered

on the wafer
vA velocity of a point on the disk
vB velocity of a point on the wafer
Q point on the wafer
rA position of Q relative to frame A
rAB relative position of the origin of frame B from frame A
rB position of Q on the film relative to frame B
Re the Reynolds number
Ro the Rossby number
ρm the density of the slurry mixture
ρs the density of solid in the mixture
ρL the density of liquid in mixture
cW the concentration of solids by weight as a percentage
cv the concentration of solids by volume as a percentage
ϕ the volume fraction
μm the viscosity of the slurry mixture
μL the viscosity of the liquid in the mixture

Fig. 1. Chemical mechanical polishing system.
Fig. 2. Diagram showing chemical mechanical polishing coordinate system centered on
wafer.
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