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A B S T R A C T

In this paper we generalize the recent implicit models that have been put into place to describe the elastic
response of bodies when thermal effects come into play. The implicit constitutive relations for thermoelastic
response presented here provide a very natural way to overcome a serious problem associated with the
celebrated model due to Fourier, namely infinite speed of the propagation of temperature. We also study some
boundary value problems within the context of the implicit equations that we have developed. We carry out a
linearization based on the classical assumption that the displacement gradient is small and obtain constitutive
relations that allow the linearized strain to be a non-linear function of the stress and temperature.

1. Introduction

The celebrated eponymous equation governing the conduction of
heat, that is given the status of a ‘law’, namely Fourier's law, is merely
an approximation which in fact predicts erroneously that temperature
propagates with infinite velocity. In view of the fact that the propaga-
tion has finite speed, there has been considerable interest in developing
a more meaningful equation for the conduction of heat. A pioneering
study in this direction is that by Cattaneo [1]. Later, Lord and Shulman
[2] studied the thermoelastic response of solids wherein they sought to
ensure finite wave speeds for the propagation of temperature. These
early works have been followed by papers too numerous to detail,
provide minor improvements or generalization to the response of
viscoelastic bodies and bodies described by higher gradient theories.
The thermoelastic response studied by Lord and Shulman [2] as well as
the others such as Ezzat [3], consider the response of Cauchy elastic
bodies (or the sub-class of Green elastic bodies) with thermal effects
being taken into consideration. In this paper, we study the response of a
new class of elastic bodies that are not necessarily Cauchy elastic
bodies, being described by implicit constitutive relationship between
the stress and the deformation gradient, when thermal effects are
included. At the outset, we would like to make a case for why the new
class of implicit constitutive relations to describe the response of elastic
bodies is worth studying in detail. As discussed in details by Rajagopal
[4–9], there are several reasons for employing a theory wherein one has
an implicit relationship between the deformation gradient and the
Cauchy stress. From a philosophical standpoint the theory is in keeping
with the demands of causality as the deformation is a consequence of

the applied traction and the resulting stress field. Such an approach also
allows for the material moduli to depend on for instance the mean value
of the stress, namely the mechanical pressure, a feature exhibited by
many polymeric solids (see Rajagopal and Saccomandi [10]). Further-
more, it allows the strain to have a nonlinear relationship with regard to
the stress even in what would be considered the ‘small strain’ regime, a
response characteristic of many intermetallic alloys (see Rajagopal [9],
Devendiran et al. [11]). Also, a Cauchy elastic body cannot describe an
elastic body which exhibits limiting strains, while a fully implicit
constitutive relation or a constitutive expression wherein the Cauchy-
Green strain as a function of the stress models can describe such
constrained response (see [4]). Moreover, while using the linearized
version of such implicit theories one does not necessarily have to face
glaring inconsistencies such as those encountered while studying the
state of strain at a crack tip within the context of the linearized theory
of elasticity. As Cauchy elastic bodies are a very special sub-class of the
class of bodies characterized by the implicit constitutive relation
between the stress and the deformation gradient, the classical results
of thermoelasticity are recovered when attention is directed to the sub-
class of Cauchy elastic bodies.

In addition to the issue of ensuring finite speed for the propagation
of temperature, we also consider the counterpart to the celebrated
Oberbeck-Boussinesq equations (see Oberbeck [12,13] and Boussinesq
[14]) that has been developed to describe the response of fluids that can
only undergo isochoric motions in isothermal processes, but can
undergo compression or expansion in non-isothermal processes. The
Oberbeck-Boussinesq approximation is one of the most useful approx-
imations in fluid mechanics, and is employed to study problems in
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astrophysical and geophysical fluid dynamics as well as several other
technological applications. It is important to bear in mind that the
Oberbeck-Boussinesq approximation does not stem from retaining
terms in a proper perturbation expansion but in fact includes terms of
different orders in the same equation. A detailed discussion of the status
of the Oberbeck-Boussinesq approximation within the context of the
full Navier-Stokes-Fourier theory can be found in the paper by
Rajagopal et al. [15]. The Oberbeck-Boussinesq approximation has
been extended for various other constitutive equations governing the
response of fluids (see [16,17] and the references cited therein). The
basic approach to the problem is the assumption that the deformation
gradient meets the restriction that the motion is isochoric in isothermal
processes.

The counterpart of the above problem within the context of classical
nonlinear thermoelasticity is however not straightforward. It is well
known that the above constraint leads to physically unrealistic situa-
tions such as that of instability of wave propagation (see Chadwick and
Scott [18], Scott [19,20], Leslie and Scott [21], Scott [22]). Since
Cauchy elastic bodies are a sub-class of the general class of implicit
elastic bodies, and also overlap with bodies wherein the Cauchy-Green
strain is an explicit function of the stress when the relationship is
invertible, for such models the physically unrealistic situation will
persist. For models wherein the relationship between the Cauchy-Green
strain and the Cauchy stress is not invertible we do not know if this
problem will recur. This is the object of an ongoing investigation. Here,
we look at the problem wherein the constitutive relation is a non-linear
relationship between the linearized strain and the Cauchy stress in
which case we do not have the possibility of inverting the nonlinear
expression for the linearized strain in terms of the stress. It is possible
that even this class of models might exhibit the physically unacceptable
behaviour observed by Scott and co-workers in the case of Cauchy
elastic bodies. This is also being looked into in the ongoing investiga-
tion mentioned above.

The organization of the paper is as follows. In the next section we
provide a brief introduction of the kinematics and the basic equations
(see Section 2) and this is followed in Section 3 where the implicit
constitutive relation between the Cauchy stress, the Cauchy-Green
tensor, heat-flux vector and temperature is proposed to describe the
response of a thermoelastic body. The first, and a specific form of the
second, laws of thermodynamics are introduced, and a generalization of
the Fourier model for heat transfer by conduction is proposed. In
Section 4 the special case of isotropic relations is considered, and some
subclasses of constitutive relations and equations are derived from that,
assuming for some cases that some of the variables are small enough; of
particular interest is the case of assuming small gradient of the
displacement field. In Section 5 several simple boundary value pro-
blems are analyzed, for the special case of the constitutive equation
obtained assuming that the gradient of the displacement field is small.
In Section 6 the constraints of incompressibility and inextensibility are
studied for two of the subclasses of constitutive equations proposed in
Section 4. Finally, in Section 7 concluding remarks are made.

2. Basic equations

A point in a body � is denoted X and in the reference configuration
the point occupies the position κ XX = ( )r . The reference configuration
is denoted �κ ( )r . In the current configuration the position of the point is
denoted x, and it is assumed that there exists a one-to-one mapping χ
such that χ tx X= ( , ). The current configuration is denoted �κ ( )t .

The displacement field, the deformation gradient, the right Cauchy-
Green stretch tensor, the Lagrange strain and the linearized strain
tensors are defined, respectively, as:

ε
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u u
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where we assume J F= det > 0, ∇r and ∇ are the gradient operators in
the reference and the current configuration, respectively.

The Cauchy stress tensor is denoted T and it satisfies the equation of
motion

ρ ρx T b¨ = div + , (2)

where ρ is the density of the body and b represents the body forces in
the current configuration, and where we use the notation ( )˙ for the
time derivative.

The second Piola-Kirchhoff stress tensor S is defined as

JS F TF= .−1 −T (3)

More details about kinematics and the above definitions can be
found, for example, in [23].

3. Implicit relations for thermoelastic bodies

We will be interested in studying some subclasses of the general
implicit relation for a thermoelastic body (see [4,5] for the original
formulation for elastic bodies)

F θS E 0( , , ) = , (4)

where θ is the absolute temperature and F is a second order tensor
relation. Relation (4) would be a generalization of the classical explicit
model K θS E= ( , ), where now in (4) S cannot be obtained in general
explicitly in terms of E. Additionally, we have added θ as one of the
fundamental variables for the heat transfer problem.

The first law of thermodynamics in the reference configuration is
(see, for example, [24])

ρ w ρhϵ̇ = + Div + r,r r r (5)

where hr is the heat flux in the reference configuration, ϵ is the internal
energy, ρr is the density in the reference configuration, w SE= tr( ˙ ) is the
rate of work and r the rate of heat generated internally by the body.

The dissipation d is defined as (see, for example, [25])

d θη w
ρ

= ˙ − ϵ̇ + ,
r (6)

where this dissipation must satisfy the inequality

d ≥ 0. (7)

The heat flux must satisfy the inequality

⎛
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θ
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(8)

Adding these two inequalities (7), (8) we obtain
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⎞
⎠
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ρ
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r
r

(9)

Let us introduce the Helmotz potential ψ, which we assume is of the
form

ψ ψ θS E= ( , , ). (10)

The relation between the Helmholtz potential and the internal energy is

ψ θη= ϵ − . (11)

From (11) we have ψ θη θηϵ̇ = ˙ + ˙ + ˙ and replacing in (9) we obtain

γρ ψ θη w h− ( ˙ + ˙ ) + − · ≥ 0.r r (12)

For ψ̇ we have (in index notation and Cartesian co-ordinates)
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