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A B S T R A C T

In this paper a new approach to study an equation of the Liénard type with a strong quadratic damping is
proposed based on Jacobi's last multiplier and Chiellini's integrability condition. We obtain a closed form
solution of the transcedental characteristic equation of the Liénard type equation using the Lambert W-function.

1. Introduction

In recent times a number of articles have appeared in the literature
which deal with the phenomenon of a linear oscillator subject to a
quadratic damping force [1–5]. Most elementary textbooks deal with
viscous damping for the obvious reason that it involves a linear
dependance on the velocity of the oscillator and presents the simplest
situation where an exact analytical treatment is possible. In general this
involves analysis of a second-order ordinary differential equation (ODE)
of the Liénard type [10], namely x f x x g x¨ + ( ) ˙ + ( ) = 0, where it is
assumed that f is a constant and the function g=x. As damping does not
arise from a single physical phenomena and is itself of various kinds,
e.g., material damping, structural damping, interfacial damping, aero-
dynamic and hydrological drag etc., therefore a different mathematical
description is needed in each case. Systems like the simple harmonic
oscillator and the viscously damped harmonic oscillator, both of which
can be solved by elementary techniques, however, represent idealiza-
tions of real life phenomena because they ignore nonlinear aspects of
the forcing term as well as the damping force.

For more realistic models applicable to problems involving hydro-
logical drag and aerodynamics, which usually involve higher velocities,
the damping force is found to be proportional to the square of the
velocity. The same is also true when an immersed object moves through
a fluid at relatively high Reynolds numbers [6]- the corresponding drag
force is found to be proportional to the square of the velocity
v sgn x x= (˙) ˙2. In recent times oscillators with a non-negative real-power
restoring force F x ksgn x x( ) = ( )| |α and quadratic damping have also been
studied by Kovacic and Rakaric [5].

The principal feature associated with quadratic damping is a

discontinuous jump of the damping force in the equation of motion
whenever the velocity vanishes such that the frictional force always
opposes the motion. For oscillatory systems this occurs every half cycles
and means that instead of a single equation of motion the latter splits
into two parts depending on the sign of the velocity. Each equation has
to solved separately and matched at the points where the velocity
changes sign. In general solving such a system in presence of non-
linearity is a rather daunting task and only in rare cases is an exact
solution to be expected. Numerical techniques on the other hand
provide valuable information about the evolution of the system and
its general nature.

From the mathematical point of view the construction of first
integrals for systems involving a quadratic dependance on the velocity
often provides interesting insights. Indeed constants of motion are the
bed rock of many of the conservation principles at the heart of
theoretical physics: the work-energy theorem applied to a conservative
system, is perhaps the most striking and oft quoted example, as it has
evolved into the principle of conservation of energy.

In this paper we examine the equation, x sgn x f x x g x¨ + ( ˙) ( ) ˙ + ( ) = 02 ,
in the light of several recent articles which have also dealt with the
same equation [1–3]. This is a discontinuous generalization of an
equation of the Liénard type involving a quadratic dependence on the
velocity. In particular we show that by imposing the Chiellini condition
of integrability on the functions f and g one can subsume many of the
previous examples into a compact scheme. Incidentally the Chiellini
condition is typically encountered in the context of integrability of the
standard Liénard equation in course of its transformation to the first-
order Abel equation of the first kind and also while finding a
Lagrangian/Hamiltonian description of the Liénard equation [7–10].
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However, its application in the case of quadratic damping appears to be
new. We show how one can derive in a systematic manner the
maximum amplitudes analytically in terms of the Lambert W function
and also construct a formal solution up to quadrature.

The organization of the paper is as follows. In Section 2 we review
the second-order ODE with a quadratic dependence on velocity in the
context of its Lagrangian/Hamiltonian description. It is shown that such
a system may be interpreted as one displaying a position dependent
mass function. The trajectory is explicitly displayed by numerical
investigations. In Section 3 we split the ODE into two parts as
mentioned above depending on the sign of the velocity ẋ and
investigate the trajectories, maximum amplitudes as well as period of
oscillations. In particular we show that the periods of the cycles and the
corresponding maximum amplitudes are both determined exclusively
by a potential function which involves the position dependent mass
function. Furthermore by invoking the Chiellini integrability condition
it is possible to write down analytic formulae for the maximum
amplitudes in terms of the Lambert W function [11,12], and also
deduce the solution up to a quadrature.

The Lambert W function is defined as the inverse function of the
mapping x xe↦ x and thus solves the equation ye x=y . The solution is
given in the form of the Lambert W function, y W x= ( ), i.e. W satisfies
W x e x( ) =W x( ) . The equation always has an infinite number of solutions,
most of which are complex, and W is multivalued. The examples
presented here include those obtained earlier by Cveticanin [1,2].

2. The Hamiltonian in presence of quadratic velocity

Consider a second-order ODE with a quadratic dependance on the
velocity given by

x f x x g x¨ + ( ) ˙ + ( ) = 0.2 (2.1)

we assume f x( ) and g(x) are such that f g(0) = (0) = 0 and f(x) is
integrable while g′(0) > 0. The functional form of g x g x g x( ) = ′(0) + ( )n
where gn(x) is analytic.

The Jacobi Last Multiplier (JLM) originally arose in the context of
Jacobi's efforts to derive an additional first integral for a system of n
first-order ODEs given n( − 2) conserved quantities [13,14]. It also
appears in the Lie theory of infinitesimal transformations [15,16]. In
addition the JLM plays a pivotal role in the context of the inverse
problem of Lagrangian dynamics as it allows for the determination of
the Lagrangian of a second-order ODE of the form, �x x x¨ = ( , ˙), an
aspect that has been extensively probed in [17–22]. In this context the
JLM may be defined as a solution of the equation,

�d
dt

M x x
x

log + ∂ ( , ˙)
∂ ˙

= 0.
(2.2)

Therefore in case of (2.1) it follows that

∫M F x F x f s ds= exp(2 ( )), where ( ) = ( ) .
x

0 (2.3)

The relationship between the JLM, M, and the Lagrangian is provided
by, M L x= ∂ /∂˙2 2, as a consequence of which the Lagrangian of (2.1) may
be expressed as

L e x V x= 1
2

˙ − ( ).F x2 ( ) 2
(2.4)

The potential V(x) is determined by substituting (2.4) into the Euler-
Lagrange equation

⎛
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⎞
⎠⎟

⎛
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⎞
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d
dt

L
x

L
x

∂
∂ ̇

= ∂
∂

,

and comparing the resulting equation with (2.1) which immediately
shows that

∫V x e g s ds( ) = ( ) .
x

F s

0

2 ( )
(2.5)

Using a Legendre transformation we then obtain the Hamiltonian

∫H e x e g s ds= 1
2

˙ + ( ) .F x
x

F s2 ( ) 2

0

2 ( )
(2.6)

It is easily verified that H is a constant of motion and the expression for
the conjugate momentum, p e x= ˙F x2 ( ) , suggests that, M e= F x2 ( ), serves
as a position dependent mass term. In fact equations with a quadratic
velocity dependance of the type considered here naturally arise in the
Newtonian formulation of the equation of motion of a particle with a
variable mass. Clearly then, the trajectories for arbitrary initial condi-
tions x y( , )0 0 , where y x= ˙, are given by

e y V x e y V x1
2

+ ( ) = 1
2

+ ( ).F x F x2 ( ) 2 2 ( )
0
2

0 (2.7)

In terms of the canonical momentum, p e x= ˙F x2 ( ) , the Hamiltonian H
becomes

H p
e

V x=
2

+ ( ).F x

2

2 ( ) (2.8)

Defining a new set of canonical variables

∫P p
e

Q e ds Ψ x≔ and = = ( ),F x

x
F s

( ) 0

( )
(2.9)

the Hamiltonian has the appearance

H P V Ψ Q P U Q U V Ψ= 1
2

+ ( ( )) = 1
2

+ ( ), where = ○ ,2 −1 2 −1
(2.10)

and corresponds to that of a particle of unit mass provided Ψ x( ) is
invertible.

Let us consider a simple example in which f x( ) = constant and
g x x( ) = . In particular suppose f x( ) = 1/2, so that F x x( ) = /2. Then the
canonical momentum and coordinate are P e y= x /2 and Q e= 2 x /2

respectively, and V x e x( ) = ( − 1) + 1x . Thus in terms of the new
coordinates the Hamiltonian has the following form

H P Q Q= 1
2

+
4

ln (
4

− 1).2
2 2

(2.11)

Fig. 1 shows some of the trajectories for the Hamiltonian in equation
(2.7) with different initial conditions and it is clear from these figures
that the origin (0, 0) is a center.

Note that for suitable choices of the functions f and g (2.1) often
exhibits the property of isochronicity and this feature has been
extensively studied in [23–25].

3. Quadratic damping

It is plain that (2.1) cannot describe a system with a quadratic
damping as the term involving ẋ2 does not change sign and oppose the
motion when the velocity reverses its sign. To remedy this feature it is
necessary to split (2.1) into two parts and write

x f x x g x x¨ + ( ) ˙ + ( ) = 0, ˙ > 0,2 (3.1)

x f x x g x x¨ − ( ) ˙ + ( ) = 0, ˙ < 0.2 (3.2)

Let us denote the Hamiltonians associated with these pieces by

H e F x y V x= 1
2

2 ( ) + ( )± ± 2 ±
(3.3)

with the superscript± standing for x y˙ = > ( < )0. Furthermore it will
be assumed that the initial point x y( , )0 0 with y( > 0)0 is such that
V x( ) = 0+

0 and F x( ) = 00 . Thus when motion commences from the
initial point then the trajectory is defined by H K y= = /2+

0
+

0
2 or in

explicit form

e y V x y1
2

+ ( ) = 1
2

.F x+2 ( ) 2 +
0
2

This trajectory first crosses the x-axis at say x x= 1 when the velocity
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