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The evolution of fast magnetosonic waves in a Hartmann type magnetohydrodynamic equilibrium is studied
with geometric optics methods. Rays are shown either to oscillate a round a fixed line parallel to the wall, go to
infinity or hit the wall at a finite time. Perturbations of the equilibrium whose frequency has the same order as
the inverse of the kinetic and magnetic diffusivities of the plasma are shown to satisfy a transport equation along

the rays which may be converted into a viscous Burgers one. This allows us to describe the later evolution of
these perturbations, which for periodic rays decay exponentially.

1. Introduction

The description of the different types of magnetohydrodynamic
waves was one of the first successes of the MHD model of the behavior
of a neutral plasma. It has now become one of the main staples of basic
MHD texts: see e.g. [1,2] for complete descriptions. No matter how easy
is to identify the frequencies of the Alfvén or magnetosonic waves, its
ulterior evolution is a much harder problem, while undoubtedly
relevant both in Fusion Theory and Astrophysics. This is a common
problem to many kinds of wave propagation, and often it simplifies
enormously when the wavelength is much shorter than the remaining
length scales of the problem. Then waves behave in a rather similar way
to particles, propagating with scarce interference along rays and
forming wavefronts as in classical geometric optics. In fact the theory
developed to study this subject, the so-called weakly nonlinear geo-
metric optics method, owes much to the classical description. Initiated
in the nineteen sixties [3-5], the theory was much developed later. Two
excellent early summaries are [6,7], and further applications may be
found e.g. in [8,9]. Caustics, resonance, shock formation are some of
the many problems one may find (see e.g. [10,11]) for some examples),
but in the main the theory, at least for single modes and applied to
equations in conservation form may be considered fairly complete.
However, this is essentially a mathematical description of hyperbolic
systems and it deals awkwardly with diffusion. When the diffusion
coefficient has the same order as the wave period, an asymptotic
analysis is still available [7], which converts the equation satisfied by
the perturbation along the rays from an inviscid to a viscous Burgers
equation. This will provide useful information on how the original
perturbation evolves along oscillating rays, but for those that hit the
wall the initial asymptotic expansion is not sufficient to deal with the
boundary layer. For this we need a double expansion in terms of the
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main frequency and its square root [12,13]. Since the transport
equation is already complex enough, we have restricted our study to
oscillating rays, which is not a too severe restriction, since as we will
see for a ray to strike the wall it must start form a very large height.
The scheme of this paper is as follows: first we set an equilibrium
state appropriate to the Hartmann problem, i.e. a velocity vanishing at
an horizontal wall and always parallel to it, and a magnetic field with a
constant component transverse to the wall plus some parallel perturba-
tion. Then we find the fast magnetosonic frequency through the eikonal
equation and study the geometry of rays and wavefronts. This turns out
to be highly complex, and for the purpose of making progress we
assume a low beta plasma, i.e. the sound velocity is assumed much
smaller than the Alfvén one. The topology of rays is then shown to be
topologically simple: a single function f associated to the equilibrium
quantities yields all the answers. For initial conditions lying in a fixed
neighborhood of the minimum of f, rays are periodic and oscillate
between the wall and a maximum height. For those to the left of this
neighborhood, which correspond to rays starting from a large height,
rays hit the wall in a finite time and with a positive angle. Initial
conditions to the right of the neighborhood, i.e. with small initial
condition, rays tend to infinity in an infinite time. For a given
equilibrium, only one of the last two possibilities may hold. The results
are illustrated with plots of the function f, the level curves of the first
integral (which are projections of the rays), and the rays and wavefronts
for certain representative values of the equilibrium parameters. The
second part deals with the transport equations of the first order
perturbations of the equilibrium associated to the fast magnetosonic
wave. While the equations themselves are well known in general, to
find explicitly the coefficients appropriate to our equilibrium and
oscillating rays is the crux of the problem and no easy task. Finally
we obtain a viscous Burgers equation (with time-dependent coeffi-
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cients) where application of the maximum principle will show that the
perturbation decays exponentially in time, with detailed estimates of
the rate of decrease.

2. Frequencies, rays and wavefronts

Let us consider an equilibrium state for an MHD plasma with
velocity v, magnetic field B, pressure P and density p:

v-Vv=vAv + (VX B) X B - VP (@D)]
0 =yAB + V X (v X B) @
0= V-(pv). 3

v represents the viscosity and 7 the resistivity; or, in a dimensionless
setting, the inverses of the kinetic and magnetic Reynolds numbers. We
take the magnetic permeability as one. The domain is the half plane
y>0, and we assume (with an obvious notation) v(x, 0) =0,
V(x, 00) = (v, 0) (1, > 0 constant). We will take the equilibrium density
constant (equal to 1). The specific equation of state for the pressure will
not matter, since later we will assume that the sound velocity is much
smaller than the Alfvén one; we only need P = P(y). We look for specific
equilibria such that the flow is always horizontal,

vx, y) = (v(y), 0), (€3]

and a constant vertical magnetic field B > 0 is imposed, with possible
horizontal perturbations,

B(x, y) = (b(y), B), 5)
with
db
b(c0) = —(o0) = 0.
dy (6)
Then (3) holds trivially, and (1) and (2) reduce to
2
u(d—‘;, 0) + [3@, - b@) - (o, d—P) =(0.0)
dy dy dy dy )
2
q[d—l;, 0] + (Bﬂ, 0) = (0, 0).
dy dy €))
These equations may be integrated,
%bz + P = const. ©)
L/ﬂ + Bb = const.
dy (10)
qﬁ + Bv = const.
dy an
(6) and (11) yield
db 1
=Y B —),
dy n By, —v) 12)
which taken to (10), converts this into
d’ 2
m— =) — B°(v — ) =0,
dy* 13)
whose solution is the well known Hartmann profile
B
o=l ool
N a4
Taking this to (11) and using (6),
v B
by) = — \/—exp (——y].
n NZi (15)

We may choose the new variable
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[v B
z= \/— exp (— y],
n NIz

(16)
so that, calling m = \/v/n, the equilibrium is given by
v=y (1l —m)
b=-z. a7z

Let us review briefly some general facts about nonlinear geometric
optics. We do not look for full generality, but only the notions we will
need. Consider a quasilinear hyperbolic system perturbed by a small
diffusivity:

ou

=+

DA, u)ﬂ + C(x, u) + Ex)Au = 0,
ot S : ox;

j (18)

in the vicinity of an equilibrium u = u,. E represents a semidefinite
negative matrix which will be assumed small in a sense to be precised
later; for the present we may ignore it. For any spatial vector k, take a
fixed eigenvalue A(k),

det[/\(k)l + DA, uo)kj] =0.

J (19)
The eikonal equation associated to this eigenvalue is
o
— =A(V¢),
a =P (20)

and ¢ is the phase of the wave with wavenumber k and frequency A. In
our case the system will be the ideal MHD one, and we choose for A the
fast magnetosonic frequency (see e.g. [1]). If u, corresponds to an
equilibrium state with velocity v, pressure P, density p and magnetic
field B, we have

[AKK) — v-K]?

2 2\?
L B e ¢ L[ 22 L B g
2\op  p 2l1\op  »p

Rays are solutions of the system

) 1/2
-4‘:’(3"‘)&9} .
PP 1)

dx
— = VAKX, K
ar - KA k)

dk

— = —-V,A(x, k).

T WA 22)
The phase is constant along rays,

2 gt ) = 0

"’ o (23)

The ray equations may be set in terms of the normalized frequency and
wave vector

_ At

n = k/Ikl, .
Ikl

cm) 24)
When equations (22) are specified for the plane, they may be written in
terms of ¢, n and its orthogonal n*, chosen so that {n, n‘} form an
orthonormal positive system:

% =cn + (nl-Vnc)nl, (25)
dn
ol "V, c)n', (26)
The fast magnetosonic frequency c(n) satisfies

) 112
[c(m) — v-n]* = 1 (a—P + 3—2) 41 [(O_P + B—Q] - 40—P(B'n)2] .

2\op  »p 21\dp  p o p
(27)

This equation may be written in terms of the speed of sound ¢? = oP/dp,
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