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A B S T R A C T

Recently there has been interest in studying a new class of elastic materials, which is described by implicit
constitutive relations. Under some basic assumption for elasticity constants, the system of governing equations of
motion for this elastic material is strictly hyperbolic but without the convexity property. In this paper, all wave
patterns for the nonclassic nonlinearly elastic materials under Riemann data are established completely by
separating the phase plane into twelve disjoint regions and by using a nonnegative dissipation rate assumption
and the maximally dissipative kinetics at any stress discontinuity. Depending on the initial data, a variety of
wave patterns can arise, and in particular there exist composite waves composed of a rarefaction wave and a
shock wave. The solutions for a physically realizable case are presented in detail, which may be used to test
whether the material belongs to the class of classical elastic bodies or the one wherein the stretch is expressed as
a function of the stress.

1. Introduction

Until recently, models used to describe the elastic response of bodies
belonged to either the class of Cauchy elastic bodies or Green elastic
bodies. Recently, Rajagopal [23,24] introduced a much larger class of
elastic bodies that included Cauchy elastic bodies and Green elastic
bodies as a subset, if by elastic response one refers to a response
wherein the body is incapable of dissipating energy, that is, inability to
convert working into thermal energy. Of particular reference to the
current work are bodies defined by implicit constitutive relations
between the stress and the deformation gradient, or the sub-class
wherein the strain in the body is a function of the stress. Such models
are relevant when one has a material wherein the body exhibits a
limiting strain or when the response between the strain and stress
becomes non-linear even for very small strains wherein the classical
models of elasticity reduce to the classical linearized elastic model.
When the elastic body exhibits limiting strain then one could encounter
the possibility that the stress cannot be expressed as a function of the
strain (see Rajagopal [23]). A detailed mathematical treatment of such
a response can be found in Bulicek et al. [4]. With regard to the
possibility of a non-linear relationship between the strain and the stress,
even when the strains are very small, one needs but look at the response

of alloys such as Gum metal (see Saito et al. [28]) and many other
Titanium Nickel based alloys (see Talling et al. [31], Withey [35],
Zhang [36]). The response of such alloys cannot be described by the
classical linearized elastic response but can be described very well with
the help of the new class of elastic models wherein the linearized strain
is a non-linear function of the stress (see Rajagopal [26]). Another very
important class of problems where the new class of models might prove
to be very useful is in predicting the state of strain in the neighborhood
of cracks and the tips of notches, etc. While the linearized theory of
elasticity predicts strains that blow up in the neighborhood of the tip of
a crack, contradicting the very precepts under which the approximation
is derived, the new class predicts results that are physically meaningful
in that the strains are bounded and never exceed the limit of small
strain that is supposed (see Rajagopal and Walton [27], Kulvait, et al.
[14]).

Nonlinear waves in elastic bars, within the traditional framework
that the stress is a function of the strain, have been studied in various
contexts. For example, recently Huang, Dai, Chen and Kong [11]
showed that for certain nonlinearly elastic materials, it is possible to
generate a phenomenon in which a tensile wave can catch the first
transmitted compressive wave (so the former can be undermined) in an
initially stress-free two-material bar. Depending on the interval of the

http://dx.doi.org/10.1016/j.ijnonlinmec.2017.02.008
Received 8 February 2017; Accepted 15 February 2017

☆ This work was supported by a GRF grant from Hong Kong Research Grants Council (Project No. CityU 11303015) and the National Natural Science Foundation of China (Grant Nos.
11301005, 11301006, 11572272) and Anhui Provincial Natural Science Foundation (Grant No. 1408085MA01). K. R. Rajagopal thanks the Office of Naval Research for support of this
work.

⁎ Corresponding author.
E-mail address: mahhdai@cityu.edu.hk (H.-H. Dai).

International Journal of Non-Linear Mechanics 91 (2017) 76–85

Available online 20 February 2017
0020-7462/ © 2017 Published by Elsevier Ltd.

MARK

http://www.sciencedirect.com/science/journal/00207462
http://www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijmecsci.2017.01.032
http://dx.doi.org/10.1016/j.ijmecsci.2017.01.032
mailto:mahhdai@cityu.edu.hk
http://dx.doi.org/10.1016/j.ijnonlinmec.2017.02.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2017.02.008&domain=pdf


initial impact, the wave catching-up phenomena can happen in two
wave patterns. Some asymptotic solutions were also constructed. As a
continuation of this work, Huang, Dai and Kong [10] investigated the
wave catching-up phenomenon in a nonlinearly elastic prestressed two-
material bar and the global structure stability of nonlinear waves was
also proved by the method of characteristics and the theory of typical
boundary problems. An interesting study on impact-induced phase
transformation in a shape memory alloy rod was carried out by Chen
and Lagoudas [6], and notably they also found that composite waves
with a rarefaction wave and a shock wave can arise.

In this paper, we study the Riemann problem for a specific sub-class
of the new class of elastic bodies proposed by Rajagopal and focus on
the various wave patterns. These equations do not possess convexity
though they are strictly hyperbolic. In this study, the Reimann problem
for this special sub-class is solved completely. We find that, depending
on the initial condition, a variety of wave patterns can arise including a
composite wave comprising of a rarefaction wave and a shock wave. We
also note that due to the implicit constitutive relation (5), it is natural to
select the velocity and the stress as the unknowns. Within such a
framework, the equations of motion governing the sub-class of bodies
under consideration cannot be written in terms of the type of
conservation laws that hold for the classical elastic body.

To introduce the kind of constitutive relation adopted in this paper,
we first recall some basic definitions in kinematics. The reference
configuration, denoted by B, is assumed to be stress-free. A particle

BX ∈ occupies the position Bx ∈ t, where Bt is the configuration at
time t, that is referred to as the current configuration. The mapping that
maps the reference configuration to the current configuration is
assumed to be one to one, and is given by χ tx X= ( , ). We denote the
displacement by u x X= − . Then the gradients of displacement are
given as

u
X

u F I u
x

u I F∂
∂

= ∇ = − or ∂
∂

= ∇ = − ,X x
−1

where F = x
X

∂
∂ is the deformation gradient tensor, and I is the identity

tensor. The Green-Saint Venant strain E is given by

E u u u u= 1
2

(∇ + (∇ ) + (∇ ) ∇ ).T T
X X X X (1)

When one assumes that the displacement gradient is small so that
the last term that appears in the right hand side of (1) can be ignored in
comparison to the other terms, one obtains the linearized measure of
strain. The constitutive relation for elastic response within the classical
theory of Cauchy or Green elasticity then leads to the popular
approximation of linearized elasticity. Recently, Rajagopal [23] (see
also Rajagopal [24–26]) introduced the following implicit constitutive
relation for isotropic elastic materials

f T B 0( , ) = , (2)

where B FF= T is the left Cauchy-Green strain tensor and T is the
Cauchy stress tensor. The general class (2) includes Cauchy elastic
bodies as a special sub-class and another special subclass that is useful
and is given by

α α αB I T T= + + ,∼ ∼ ∼
0 1 2

2 (3)

where the materials moduli α i( = 1, 2, 3)∼
i depend on the density and

the principal invariants of the Cauchy stress. Under the small strain
assumption

O δ δumax ∥∇ ∥ = ( ), ≪ 1,
B tX

X
∈ , ∈

where ∥·∥ denotes the trace norm, Rajagopal [23] obtained the
approximation with O δ( ) from (3) as follows

ϵ α α αI T T= + + ,0 1 2
2

where as usual the materials moduli α i( = 1, 2, 3)i depend on the
density in current configuration and the principal invariants of Cauchy

stress, ϵ is the linearized strain tensor. In particular, Kannan, Rajagopal
and Saccomandi [12] proposed the following special constitutive
relation:

ϵ β α γT I T T= (tr ) + 1 +
2

tr ,
n

2
⎛
⎝⎜

⎞
⎠⎟ (4)

where α β γ≥ 0, ≤ 0, ≥ 0 and n are constants.
There have been many studies carried out within the context of the

new class of elastic bodies defined by (4). Of relevance to the current
study is the paper by Kannan, Rajagopal and Saccomandi [12], wherein
they investigated the unsteady motions of this new class of elastic
solids. It was shown that the stress wave changes its shape since the
wave speed depends on the stress and the value of stress varies
according to the thickness of the slab. All these phenomena for the
generated stress wave are quite different from what one observes for a
classical linear elastic material.

When we restrict the constitutive relation (4) to one dimension, we
obtain the one-dimensional constitutive relation

βT α γ T Tϵ = + 1 +
2

.
n

2
⎛
⎝⎜

⎞
⎠⎟ (5)

We will assume that the constants in (5) satisfy that

α β γ n> 0, < 0, > 0, > 0. (6)

Moreover, we suppose that

α β+ > 0. (7)

Remark 1. The assumption (7) guarantees the following governing
system of equations (8) is hyperbolic.

In this paper, we consider the Riemann problem for nonlinear wave
equations

ρ v
t

T
x t

v
x

∂
∂

= ∂
∂

, ∂ϵ
∂

= ∂
∂ (8)

with the initial data

T v x
T v x
T v x

( , )(0, ) = ( , ), < 0,
( , ), > 0,

l l

r r

⎧⎨⎩ (9)

where t, x represent the time and spatial coordinate respectively, ρ the
density of elastic body, T the Cauchy stress, ϵ the strain, v the particle
velocity. The constant Riemann data in (9) satisfy that T v T v( , ) ≠ ( , )l l r r .

Riemann problem for PDEs is of significance not only in physics, but
also in mathematics. It is well-known that the Riemann problem can be
used as a building block to prove existence results for the Cauchy
problem for (8) with general initial data [9], possibly having large total
variation [3].

For the gas dynamics equations with convex condition, the Riemann
problem has been well-studied (see [5,29]). Wendroff [33,34] investi-
gated the gas dynamics equations without convexity conditions for the
pressure and constructed a solution to the Riemann problem. Liu
[18,19] considered the Riemann problem for general systems of
conservation laws. By introducing an extended entropy condition,
which is equivalent to the Lax's shock inequalities [15] when the
system is genuinely nonlinear, Liu [19] proved the uniqueness theorem
for the Riemann problem of the gas dynamics equations without
convexity conditions for the pressure. By a special vanishing viscosity
method, Dafermos [7] obtained the structure of solutions of the
Riemann problem for a general 2×2 conservation laws. Matsumura
and Mei [21] considered the nonlinear asymptotic stability of viscous
shock profile for a one-dimensional system of viscoelasticity, where the
constitutive relation is non-convex. They applied the degenerate shock
condition proposed by Nishihara [22] to single out an admissible shock
solution. By introducing a generalized shock in [22], Sun and Sheng
[30] constructed the solutions to the Riemann problem for a system of
nonlinear degenerate wave equations in elasticity, for which the strain-
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