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A B S T R A C T

The synchronization of a controlled unbalanced rotor with a viscoelastically mounted supporting body and force-
excitation is studied. The existence and stability conditions for the synchronous regime of motion are derived for
a general control law by the method of direct separation of motion. Then a control law is developed using speed
gradient method in order to transfer maximum energy from the excitation to the rotor. The free parameters of
the control law are derived in such a way that the controlled synchronization is stable at the existence limit.

1. Introduction

The effect of synchronization, also called lock-in effect or synergy,
has been known over decades in fields like physics, biology, chemistry
and psychology, based on a natural principle acting from quantum to
celestial level [1,2]. In the mechanical sense two oscillators with
slightly different periods can synchronize due to a weak coupling on
the same periodic time. In 1948 this effect also was observed for
coupled unbalanced rotors during experiments [3]. Since then many
applications have been developed including synchronized unbalanced
rotors driven by electric motors with base- or force-excitation as well as
coupled multiple unbalanced rotors. Based on approaches with uncon-
trolled motors [4,5], called self-synchronization, research was done to
improved and ensure the stability using control algorithms. In most of
these cases the stable synchronous state itself was the aim of control
[6,7]. An amazing byproduct of synchronization is the transfer of
energy from the faster oscillator to the slower one that can be exploited
for energy harvesting or vibration reduction in technical applications.

The entrainment of a self-sustained oscillator by an external force,
also called capture effect, can be seen as the simplest case of
synchronization [1]. In this sense the synchronization between an
external force excitation and the motion of an unbalanced rotor is
studied in this contribution. A control torque will be applied to the
rotor. The aim is to define a control law for a stable energy transfer
from the excitation force to the rotor in the synchronous state. To this
end the control parameters will be derived fulfilling the existence and
stability conditions for the synchronous state that are obtained by using
the method of direct separation of motion [8].

The paper is organized as follows: Outgoing from the equations of
motion the 0th-order approximations of the existence and stability

conditions for the controlled synchronization with a general control law
using the method of direct separation of motion are derived in Section
2. Section 3 contains the definition of a control law for the motor
torque, depending on the total energy of the system, using speed
gradient method. Then the free parameters for a simplified control law,
only depending on the kinetic energy of the rotor, are derived fulfilling
the existence and stability conditions at the existence limit. Results
from numerical simulations are presented in Section 4.

2. Existence and stability conditions for a force-excited
unbalanced rotor

The considered system consists of a rotor driven by an electric motor
(moment of inertia J, control torque M) with an eccentric mass
(eccentricity e, mass me) on a viscoelastically mounted supporting body
(stiffness c, damping coefficient d, mass m) with a force excitation

F t F Ωt( ) = sin with the excitation frequency Ω = const according to
Fig. 1. The coordinates of the system are the displacement of the
supporting body x and the rotor angle φ. Gravitational effects are not
considered here.

2.1. Equations of motion

The total energy of the system is given by

H φ φ x x H φ H φ φ x H x x( , ˙ , , ˙) = ( ˙) + ( , ˙ , ˙) + ( , ˙)1 2 3 (1)

containing the kinetic rotor energy

H φ J φ J J m e( ˙) = 1
2

˙ , = +1 e
2

e e
2

(2)

the kinetic energy of interaction between the rotor and the supporting
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body

H φ φ x m xφe φ( , ˙ , ˙) = − ˙ ˙ sin2 e (3)

and the kinetic and potential energy of the supporting body itself

H x x cx m m x( , ˙) = 1
2

+ 1
2

( + ) ˙ .3
2

e
2

(4)

With the Lagrangian L H φ φ x x cx= ( , ˙ , , ˙) − 2 the Lagrange equations of
the second kind yield the equations of motion in the form

m m x dx cx F Ωt m e φ φ φ φ( + ) ¨ + ˙ + = sin + ( ¨ sin + ˙ cos ),e e
2 (5)

sJ φ m ex φ M t¨ = ¨ sin + ( , )e e (6)

with the total inertia of the rotor J J m e= +e e
2 and the time derivative

defined as ˙ ≡
t

d
d . For (6) it is assumed that a control law in the form

sM M t= ( , ), with the state vector s φ φ x x= [ , ˙ , , ˙]T, can be found. For
the method of direct separation of motion two time scales are
introduced, the slow time t and the fast dimensionless time
τ Ωt Ω= , ⪢1. For this purpose the equations of motion are reparame-
trized with the fast time τ Ωt= , defining ′ ≡ =

τ Ω t
d
d

1 d
d , thus

m m Ω x dΩx cx F τ m e Ω φ φ Ω φ φ( + ) ″ + ′ + = sin + ( ″ sin + ′ cos ),e
2

e
2 2 2

(7)

sJ Ω φ m eΩ x φ M t τ″ = ″ sin + ( , , ).e
2

e
2 (8)

The normal forms of the differential equations read

x δx ω x F τ ε
m m

φ φ φ φ″ + 2 ′ + = sin +
+

( ″ sin + ′ cos ),x
2

e

2
(9)

sφ ε
J
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e (10)

with
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In case of synchronization the mean value of the angular velocity of the
rotor φ̇ equals a rational multiple of the angular excitation frequency,

Ωk
p , called regime of type k p/ with the natural numbers k p, . The
separation ansatz for the rotation of the rotor

φ t τ k
p

τ α t ψ t τ( , ) = + ( ) + ( , )
(12)

contains the constant average angular velocity Ωk
p , the slowly changing

phase angle α t( ) and a rapidly changing periodic term ψ t τ( , ) whose
average value over one period in the fast time scale is zero. The average
value of a function f t τ( , ) over the period πp2 in the fast time scale is
defined as

∫πp
f t τ τ f t τ1

2
( , ) d ≡ ( , ) ,

πp

0

2

(13)

where all components in the slow time scale t are assumed to be
constant over one period in the fast time scale.

2.2. Approximation of the motion of the supporting body

Introducing the separation (12) into the equation of motion (9)
yields the differential equation for stationary solutions of the phase
angle α = const0 ,

x δx ω x F τ εV″ + 2 ′ + = sin + ,x x k p
2

, / (14)

with
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For the fast motion of the supporting body x τ( ) periodic solutions are
searched. Assuming the parameter ε to be small, ε⪡1, an asymptotic
expansion of (14) is appropriate [9]. For this the ansatz for the fast
motions x τ ψ t τ( ), ( , ),

x x εx ε x ψ ψ εψ ε ψ= + + + ..., = + + + ...,0 1
2

2 0 1
2

2 (16)

will be introduced into (14). After the series expansion of (14) with
respect to ε at ε = 0 the comparison of the coefficients of the powers of ε
yields a system of differential equations for the displacement x τ( ) of the
supporting body

ε x δx ω x F τε

x δx ω x V ε x δx ω x V
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The first differential equation of (17) does not depend on the rotation
angle of the rotor φ, thus its particular solution and by this the 0th-
order approximation of the particular solution of (14) is directly
obtained as

x τ F A τ A τ( ) = − ( cos − sin )δ ω0 (19)

by using the influence numbers

A
ω

ω δ
= − 1

( − 1) + 4
,ω

x

x

2

2 2 2 (20)

A δ
ω δ

= 2
( − 1) + 4

.δ
x
2 2 2 (21)

2.3. Approximation of the rotor motion

For a solution of the perturbed equation of motion (10), the solution
of the unperturbed differential equation in ψ with ε = 0 must be known.
For this purpose the nonlinear control torque has to be linearized at the
stationary angular velocity φ′ = k

p and the angle φ τ α= +k
p , thus

Fig. 1. Unbalanced rotor with control torque M and force-excitation.

R. Bartkowiak International Journal of Non-Linear Mechanics 91 (2017) 95–102

96



Download English Version:

https://daneshyari.com/en/article/5016570

Download Persian Version:

https://daneshyari.com/article/5016570

Daneshyari.com

https://daneshyari.com/en/article/5016570
https://daneshyari.com/article/5016570
https://daneshyari.com

